In recent years, a technique known as Full-Matrix Capture (FMC) has gained some headway in the NDE community for phased array applications. It's important to understand that FMC is the method that the instrumentation acquires the ultrasonic signals, but further post-processing is required in software to create a meaningful image for a particular application. Having a flexible software interface, small form factor, excellent signal-to-noise ratio per acquisition channel on a 64/64 or 128/128 phased array module with FMC capability proves beneficial in both industrial implementation and in further investigation of post-processing techniques. This paper will provide an example of imaging with a 5MHz linear phased array transducer with 128 elements using FMC and a popular post-processing algorithm known as Total-Focus Method (TFM).
Abstract. Synthetic aperture focusing technique (SAFT) and total focusing method (TFM) have become popular tools in the field of ultrasonic non destructive testing. In particular, they are employed for detection and characterization of flaws. From data acquired with a transducer array, those techniques aim at reconstructing an image of the inspected object from coherent summations. In this paper, we make a comparison between the standard technique and a migration approach. Using experimental data, we show that the developed approach is faster and offers a better signal to noise ratio than the standard total focusing method. Moreover, the migration is particularly effective for near-surface imaging where standard methods used to fail. On the other hand, the migration approach is only adapted to layered objects whereas the standard technique can fit complex geometries. The methods are tested on homogeneous pieces containing artificial flaws such as side drilled holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.