Oncoprotein E6 is essential for oncogenesis induced by human papillomaviruses (HPVs). The solution structure of HPV16-E6 C-terminal domain reveals a zinc binding fold. A model of full-length E6 is proposed and analyzed in the context of HPV evolution. E6 appears as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions. We investigated surface residues involved in two specialized activities of high-risk genital HPV E6: p53 tumor suppressor degradation and nucleic acid binding. Screening of E6 surface mutants identified an in vivo p53 degradation-defective mutant that fails to recruit p53 to ubiquitin ligase E6AP and restores high p53 levels in cervical carcinoma cells by competing with endogeneous E6. We also mapped the nucleic acid binding surface of E6, the positive potential of which correlates with genital oncogenicity. E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis.
To create a rapid system to test the effect of sequence changes on recombinant antibody binding, we have developed a procedure for producing functional scFv fragments in an Escherichia coli cell-free translation system. Functional antibodies with antigen-binding activity are obtained only if disulfide formation and rearrangement is allowed to take place during the translation reaction. The inclusion of protein disulfide isomerase (PDI) leads to a threefold increase in yield over that obtained in the presence of glutathione redox systems. DsbA had no such effect, indicating that disulfide shuffing, and not net formation, is the crucial yield-limiting step. The addition of the molecular chaperones DnaK and DnaJ increased the amount of soluble protein but not the amount of functional scFv, which appears to be limited entirely by correct disulfide formation. None of these factors significantly influenced total protein synthesis. In the presence of PDI, chaperones, reduced glutathione and oxidized glutathione, 50% of the scFv produced (about 8 micrograms/ml in only 15 min) could be recovered from immobilized antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.