Brain function relies on fast and precisely timed synaptic vesicle (SV) release at active zones (AZs). Efficacy of SV release depends on distance from SV to Ca(2+) channel, but molecular mechanisms controlling this are unknown. Here we found that distances can be defined by targeting two unc-13 (Unc13) isoforms to presynaptic AZ subdomains. Super-resolution and intravital imaging of developing Drosophila melanogaster glutamatergic synapses revealed that the Unc13B isoform was recruited to nascent AZs by the scaffolding proteins Syd-1 and Liprin-α, and Unc13A was positioned by Bruchpilot and Rim-binding protein complexes at maturing AZs. Unc13B localized 120 nm away from Ca(2+) channels, whereas Unc13A localized only 70 nm away and was responsible for docking SVs at this distance. Unc13A(null) mutants suffered from inefficient, delayed and EGTA-supersensitive release. Mathematical modeling suggested that synapses normally operate via two independent release pathways differentially positioned by either isoform. We identified isoform-specific Unc13-AZ scaffold interactions regulating SV-Ca(2+)-channel topology whose developmental tightening optimizes synaptic transmission.
Neural information processing depends on precisely timed, Ca-activated synaptic vesicle exocytosis from release sites within active zones (AZs), but molecular details are unknown. Here, we identify that the (M)Unc13-family member Unc13A generates release sites and show the physiological relevance of their restrictive AZ targeting. Super-resolution and intravital imaging of Drosophila neuromuscular junctions revealed that (unlike the other release factors Unc18 and Syntaxin-1A) Unc13A was stably and precisely positioned at AZs. Local Unc13A levels predicted single AZ activity. Different Unc13A portions selectively affected release site number, position, and functionality. An N-terminal fragment stably localized to AZs, displaced endogenous Unc13A, and reduced the number of release sites, while a C-terminal fragment generated excessive sites at atypical locations, resulting in reduced and delayed evoked transmission that displayed excessive facilitation. Thus, release site generation by the Unc13A C terminus and their specific AZ localization via the N terminus ensure efficient transmission and prevent ectopic, temporally imprecise release.
The mechanisms that stabilize synaptic strength are enigmatic. Goel et al. demonstrate that the abundance and nanostructure of scaffolds at presynaptic active zones are bidirectionally scaled to homeostatically calibrate global neurotransmitter release at the Drosophila melanogaster neuromuscular junction.
Assembly and maturation of synapses at the Drosophila neuromuscular junction
(NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by
the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold
protein spinophilin binds to the C-terminal portion of neurexin and is needed to
limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of
presynaptic spinophilin results in the formation of excess, but atypically small
active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at
spinophilin mutant NMJs, and removal of single copies of the
neurexin-1, Syd-1 or neuroligin-1 genes suppresses the
spinophilin-active zone phenotype. Evoked transmission is strongly reduced at
spinophilin terminals, owing to a severely reduced release probability at
individual active zones. We conclude that presynaptic spinophilin fine-tunes
neurexin/neuroligin signalling to control active zone number and functionality,
thereby optimizing them for action potential-induced exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.