Summary1. The causes of cyclical fluctuations in animal populations remain a controversial topic in ecology. Food limitation and predation are two leading hypotheses to explain small mammal population dynamics in northern environments. We documented the seasonal timing of the decline phases and demographic parameters (survival and reproduction) associated with population changes in lemmings, allowing us to evaluate some predictions from these two hypotheses. 2. We studied the demography of brown lemmings (Lemmus trimucronatus), a species showing 3-to 4-year population cycles in the Canadian Arctic, by combining capture-mark-recapture analysis of summer live-trapping with monitoring of winter nests over a 10-year period. We also examined the effects of some weather variables on survival. 3. We found that population declines after a peak occurred between the summer and winter period and not during the winter. During the summer, population growth was driven by change in survival, but not in fecundity or proportion of juveniles, whereas in winter population growth was driven by changes in late summer and winter reproduction. 4. We did not find evidence for direct density dependence on summer demographic parameters, though our analysis was constrained by the paucity of data during the low phase. Body mass, however, was highest in peak years. 5. Weather effects were detected only in early summer when lemming survival was positively related to snow depth at the onset of melt but negatively related to rainfall. 6. Our results show that high mortality causes population declines of lemmings during summer and fall, which suggests that predation is sufficient to cause population crashes, whereas high winter fecundity is the primary factor leading to population irruptions. The positive association between snow depth and early summer survival may be due to the protective cover offered by snow against predators. It is still unclear why reproduction remains low during the low phase.
Cyclic population fluctuations are common in boreal and Arctic species but the causes of these cycles are still debated today. Among these species, lemmings are Arctic rodents that live and reproduce under the snow and whose large cyclical population fluctuations in the high Arctic impact the whole tundra food web. We explore, using lemming population data and snow modeling, whether the hardness of the basal layer of the snowpack, determined by rain-on-snow events (ROS) and wind storms in autumn, can affect brown lemming population dynamics in the Canadian high Arctic. Using a 7-year dataset collected on Bylot Island, Nunavut, Canada over the period 2003-2014, we demonstrate that liquid water input to snow is strongly inversely related with winter population growth (R 2 ≥ 0.62) and to a lesser extent to lemming summer densities and winter nest densities (R 2 = 0.29-0.39). ROS in autumn can therefore influence the amplitude of brown lemming population fluctuations. Increase in ROS events with climate warming should strongly impact the populations of lemmings and consequently those of the many predators that depend upon them. Snow conditions may be a key factor influencing the cyclic dynamics of Arctic animal populations.Résumé : Des fluctuations cycliques de population sont fréquentes chez des espèces boréales et arctiques mais les causes de ces cycles sont encore débattues. Parmi ces espèces, les lemmings sont des rongeurs arctiques qui vivent et se reproduisent sous la neige et dont les grandes variations de population cycliques dans le haut-arctique impactent tout le réseau trophique toundrique. Au moyen de données sur les populations de lemming et de modélisation de la neige, nous examinons la possibilité que la dureté de la couche de neige basale, déterminée par des évènements de pluie sur neige (PSN) et Arctic Science Downloaded from www.nrcresearchpress.com by 44.224.250.200 on 07/08/20 For personal use only. PSN avec le réchauffement climatique devrait fortement impacter les populations de lemming et par conséquent celles des nombreux prédateurs qui en dépendent. Les conditions de neige pourraient être un facteur clé influençant la dynamique des cycles des populations animales arctiques. [Traduit par la Rédaction] Mots-clés : lemming, dynamique des populations, neige, haut arctique, climat. 814
It is generally recognized that delayed density-dependence is responsible for cyclic population dynamics. However, it is still uncertain whether a single factor can explain why some rodent populations fluctuate according to a 3-4 yr periodicity. There is increasing evidence that predation may play a role in lemming population cycles, although this effect may vary seasonally. To address this issue, we conducted an experiment where we built a large exclosure (9 ha) to protect brown lemmings (Lemmus trimucronatus) from avian and terrestrial predators. We tested the hypothesis that predation is a limiting factor for lemmings by measuring the demographic consequences of a predator reduction during the growth and peak phases of the cycle. We assessed summer (capture-mark-recapture methods) and winter (winter nest sampling) lemming demography on two grids located on Bylot Island, Nunavut, Canada from 2008 to 2015. The predator exclosure became fully effective in July 2013, allowing us to compare demography between the control and experimental grids before and during the treatment. Lemming abundance, survival and proportion of juveniles were similar between the two grids before the treatment. During the predator-reduction period, summer densities were on average 1.9× higher inside the experimental grid than the control and this effect was greatest for adult females and juveniles (densities 2.4× and 3.4× higher, respectively). Summer survival was 1.6× higher on the experimental grid than the control whereas body mass and proportion of juveniles were also slightly higher. Winter nest densities remained high inside the predator reduction grid following high summer abundance, but declined on the control grid. These results confirm that predation limits lemming population growth during the summer due to its negative impact on survival. However, it is possible that in winter, predation may interact with other factors affecting reproduction and ultimately population cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.