Abstract:The role of sustainable mobility and its impact on society and the environment is evident and recognized worldwide. Nevertheless, although there is a growing number of measures and projects that deal with sustainable mobility issues, it is not so easy to compare their results and, so far, there is no globally applicable set of tools and indicators that ensure holistic evaluation and facilitate replicability of the best practices. In this paper, based on the extensive literature review, we give a systematic overview of relevant and scientifically sound indicators that cover different aspects of sustainable mobility that are applicable in different social and economic contexts around the world. Overall, 22 sustainable mobility indicators have been selected and an overview of the applied measures described across the literature review has been presented.
Traffic influences the quality of life in a neighborhood in many different ways. Today, in many patsy of the world the benefits of accessibility are taken for granted and traffic is perceived as having a negative impact on satisfaction with the neighborhood. Negative health effects are observed in a number of studies and these stimulate the negative feelings in the exposed population. The noise produced by traffic is one of the most important contributors to the appreciation of the quality of life. Thus, it is useful to define a number of indicators that allow monitoring the current impact of noise on the quality of life and predicting the effect of future developments. This work investigates and compares a set of indicators related to exposure at home and exposure during trips around the house. The latter require detailed modeling of the population’s trip behavior. The validity of the indicators is checked by their ability to predict the outcome of a social survey and by outlining potential causal paths between them and the outcome variables considered: general satisfaction with the quality of life in the neighborhood, noise annoyance at home, and reported traffic density in the area.
The article describes an application of global positioning system (GPS) tracking data (floating bike data) for measuring delays for cyclists at signalized intersections. For selected intersections, we used trip data collected by smartphone tracking to calculate the average delay for cyclists by interpolation between GPS locations before and after the intersection. The outcomes were proven to be stable for different strategies in selecting the GPS locations used for calculation, although GPS locations too close to the intersection tended to lead to an underestimation of the delay. Therefore, the sample frequency of the GPS tracking data is an important parameter to ensure that suitable GPS locations are available before and after the intersection. The calculated delays are realistic values, compared to the theoretically expected values, which are often applied because of the lack of observed data. For some of the analyzed intersections, however, the calculated delays lay outside of the expected range, possibly because the statistics assumed a random arrival rate of cyclists. This condition may not be met when, for example, bicycles arrive in platoons because of an upstream intersection. This justifies that GPS-based delays can form a valuable addition to the theoretically expected values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.