Background: Tanabin, transitin and nestin are type VI intermediate filament (IF) proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied.
Testosterone suppression, achieved through orchiectomy or medically induced androgen-deprivation therapy (ADT), is a standard treatment for men with recurrent and metastatic prostate cancer. Current assay methods demonstrate the capacity for testosterone suppression to <0.7 nmol/l, and clinical data support improved outcomes from ADT when lower levels are achieved. Practical clinical guidelines are warranted to facilitate adoption of 0.7 nmol/l as the new standard castrate testosterone level.A pan-Canadian group of experts, representing diverse clinical specialties, identified key clinical issues, searched and reviewed relevant literature, and developed consensus statements on testosterone suppression for the treatment of prostate cancer. The expert panel found that current evidence supports the clinical benefit of achieving low testosterone levels during ADT, and encourage adoption of ≤0.7 nmol/l as a new castrate level threshold. The panel recommends regular monitoring of testosterone (e.g., every 3-6 months) and prostate-specific antigen (PSA) levels as clinically appropriate (e.g., every 3-6 months) during ADT, with reassessment of therapeutic strategy if testosterone is not suppressed or if PSA rises regardless of adequate testosterone suppression. The panel also emphasizes the need for greater awareness and education regarding testosterone assay specifications, and strongly promotes the use of mass spectrometry-based assays to ensure accurate measurement of testosterone at castrate levels.
Failure to suppress testosterone below 0.7 nM in castrated prostate cancer patients is associated with poor clinical outcomes. Testosterone levels in castrated patients are therefore routinely measured. Although mass spectrometry is the gold standard used to measure testosterone, most hospitals use an immunoassay method. In this study, we sought to evaluate the accuracy of an immunoassay method to measure castrate testosterone levels, with mass spectrometry as the reference standard. We retrospectively evaluated a cohort of 435 serum samples retrieved from castrated prostate cancer patients from April to September 2017. No follow-up of clinical outcomes was performed. Serum testosterone levels were measured in the same sample using liquid chromatography coupled with tandem mass spectrometry and electrochemiluminescent immunoassay methods. The mean testosterone levels were significantly higher with immunoassay than with mass spectrometry (0.672 ± 0.359 vs 0.461 ± 0.541 nM; P < 0.0001). Half of the samples with testosterone ≥0.7 nM assessed by immunoassay were measured <0.7 nM using mass spectrometry. However, we observed that only 2.95% of the samples with testosterone <0.7 nM measured by immunoassay were quantified ≥0.7 nM using mass spectrometry. The percentage of serum samples experiencing testosterone breakthrough at >0.7 nM was significantly higher with immunoassay (22.1%) than with mass spectrometry (13.1%; P < 0.0001). Quantitative measurement of serum testosterone levels >0.7 nM by immunoassay can result in an inaccurately identified castration status. Suboptimal testosterone levels in castrated patients should be confirmed by either mass spectrometry or an immunoassay method validated at low testosterone levels and interpreted with caution before any changes are made to treatment management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.