Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder caused by a CAG repeat expansion in the SCA7 gene leading to elongation of a polyglutamine tract in ataxin-7, a protein of unknown function. A putative ataxin-7 yeast orthologue (SGF73) has been identified recently as a new component of the SAGA (Spt/Ada/Gcn5 acetylase) multisubunit complex, a coactivator required for transcription of a subset of RNA polymerase II-dependent genes. We show here that ataxin-7 is an integral component of the mammalian SAGA-like complexes, the TATA-binding protein-free TAF-containing complex (TFTC) and the SPT3/TAF9/GCN5 acetyltransferase complex (STAGA). In agreement, immunoprecipitation of ataxin-7 retained a histone acetyltransferase activity, characteristic for TFTC-like complexes. We further identified a minimal domain in ataxin-7 that is required for interaction with TFTC/STAGA subunits and is conserved highly through evolution, allowing the identification of a SCA7 gene family. We showed that this domain contains a conserved Cys(3)His motif that binds zinc, forming a new zinc-binding domain. Finally, polyglutamine expansion in ataxin-7 did not affect its incorporation into TFTC/STAGA complexes purified from SCA7 patient cells. We demonstrate here that ataxin-7 is the human orthologue of the yeast SAGA SGF73 subunit and is a bona fide subunit of the human TFTC-like transcriptional complexes.
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Spinocerebellar ataxia type 7 (SCA7) is one of several inherited neurodegenerative disorders caused by a polyglutamine (polyQ) expansion, but it is the only one in which the retina is affected. Increasing evidence suggests that transcriptional alterations contribute to polyQ pathogenesis, although the mechanism is unclear. We previously demonstrated that theSCA7 gene product, ataxin-7 (ATXN7), is a subunit of the GCN5 histone acetyltransferase–containing coactivator complexes TFTC/STAGA. We show here that TFTC/STAGA complexes purified from SCA7 mice have normal TRRAP, GCN5, TAF12, and SPT3 levels and that their histone or nucleosomal acetylation activities are unaffected. However, rod photoreceptors from SCA7 mouse models showed severe chromatin decondensation. In agreement, polyQ-expanded ataxin-7 induced histone H3 hyperacetylation, resulting from an increased recruitment of TFTC/STAGA to specific promoters. Surprisingly, hyperacetylated genes were transcriptionally down-regulated, and expression analysis revealed that nearly all rod-specific genes were affected, leading to visual impairment in SCA7 mice. In conclusion, we describe here a set of events accounting for SCA7 pathogenesis in the retina, in which polyQ-expanded ATXN7 deregulated TFTC/STAGA recruitment to a subset of genes specifically expressed in rod photoreceptors, leading to chromatin alterations and consequent progressive loss of rod photoreceptor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.