Progressive familial intrahepatic cholestasis (PFIC) is a lethal inherited childhood cholestasis of hepatocellular origin. Different subtypes of PFIC have been described according to serum gamma‐glutamyl transpeptidase (GGT) activity. There is currently no effective medical therapy available for children with PFIC. We report on 39 patients with PFIC who received ursodeoxycholic acid (UDCA) orally (20‐30 mg/kg b.w./day) for a period of 2 to 4 years. Group 1 (n = 26) consisted of children with normal GGT activity, and group 2 (n = 13) of children with high GGT activity. Within group 1, liver tests normalized in 11 children, improved in 5, and stabilized or worsened in 10. Within group 2, liver tests normalized in six children, improved in four, and stabilized or worsened in three. Improvement of parameters was associated with an enrichment of the circulating pool of bile acids with UDCA. Hepatosplenomegaly and pruritus disappeared or diminished in children in whom liver tests normalized. In nine of these children, liver tests worsened and normalized again after stopping and restarting UDCA. Liver histology assessed in four children after normalization of liver tests and 2 years of treatment showed a decrease in fibrosis. We conclude that UDCA should be considered in the initial therapeutic management of children with PFIC, because it appears effective in resolving or improving the liver function and the clinical status of a fair proportion of children. Chronic UDCA therapy might thus avoid the need for liver transplantation in some children with PFIC.
ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against α-synuclein, Mn 2+ , and Zn 2+ toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders.mitochondria | lysosome | flippase | α-synuclein | P5-type ATPase N euronal fitness depends on optimal lysosomal function and efficient lysosomal delivery of proteins and organelles by autophagy for subsequent breakdown (1, 2). Kufor-Rakeb syndrome (KRS) is an autosomal recessive form of Parkinson's disease (PD) associated with dementia, which is caused by mutations in ATP13A2/PARK9 (3). Mutations in or knockdown (KD) of ATP13A2 lead to lysosomal dysfunctions, including reduced lysosomal acidification, decreased degradation of lysosomal substrates (4), impaired autophagosomal flux (4, 5), and accumulation of fragmented mitochondria (5, 6). By contrast, overexpression (OE) of Ypk9p (i.e., the yeast ATP13A2 ortholog) protects yeast against toxicity of α-synuclein (7), which is the major protein in Lewy bodies, the abnormal protein aggregates that develop inside nerve cells in PD. This protective effect of ATP13A2 on α-synuclein toxicity is conserved in yeast, Caenorhabditis elegans, and rat neuronal cells (7). Because ATP13A2 imparts resistance to Mn 2+ (7-9) and Zn 2+ (10-12), it was proposed that ATP13A2 may function as a Mn 2+ (7-9) and/or Zn 2+ transporter (10-12).ATP13A2 belongs to the P5 subfamily of the P-type ATPase superfamily, which comprises five subfamilies (P1-5) of membrane transporters. P-type ATPases hydrolyze ATP to actively transport inorganic ions across membranes or lipids between membrane leaflets (reviewed in ref. 13). During the transport cycle, a phosphointermediate is formed on a conserved aspartate residue (14). The human P5-type ATPases are divided into two groups, P5A (ATP13A1) and P5B (ATP13A2-5), but their transport specificity has not been established (14-16).P-type ATPases comprise a membrane-embedded core of six transmembrane (TM) helices (M1-6) that form the substrate binding site(s) and entrance/exit pathways for the transp...
Background-Saccharomyces boulardii is a non-pathogenic yeast which exerts trophic eVects on human and rat small intestinal mucosa. Aims-To examine the eVects of S boulardii on ileal adaptation after proximal enterectomy in rats. Methods-Wistar rats, aged eight weeks, underwent 60% proximal resection or transection and received by orogastric intubation either 1 mg/g body wt per day lyophilised S boulardii or the vehicle for seven days. The eVects on ileal mucosal adaptation were assessed eight days after surgery. Results-Compared with transection, resection resulted in mucosal hyperplasia with significant decreases in the specific and total activities of sucrase, lactase, and maltase. Treatment of resected animals with S boulardii had no eVect on mucosal hyperplasia but did upgrade disaccharidase activities to the levels of the transected group. Enzyme stimulation by S boulardii was associated with significant increases in diamine oxidase activity and mucosal polyamine concentrations. Likewise, sodium dependent D-glucose uptake by brush border membrane vesicles, measured as a function of time and glucose concentration in the incubation medium, was significantly (p<0.05) increased by 81% and three times respectively in the resected group treated with S boulardii. In agreement with this, expression of the sodium/glucose cotransporter-1 in brush border membranes of resected rats treated with S boulardii was enhanced twofold compared with resected controls. Conclusion-Oral administration of S boulardii soon after proximal enterectomy improves functional adaptation of the remnant ileum. (Gut 1999;45:89-96)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.