Background: Few studies have addressed the appropriate duration of antibiotic therapy for diabetic foot infections (DFI) with or without amputation. We will perform two randomized clinical trials (RCTs) to reduce the antibiotic use and associated adverse events in DFI. Methods: We hypothesize that shorter durations of postdebridement systemic antibiotic therapy are noninferior (10% margin, 80% power, alpha 5%) to existing (long) durations and we will perform two unblinded RCTs with a total of 400 DFI episodes (randomization 1:1) from 2019 to 2022. The primary outcome for both RCTs is remission of infection after a minimal follow-up of 2 months. The secondary outcomes for both RCTs are the incidence of adverse events and the overall treatment costs. The first RCT will allocate the total therapeutic amputations in two arms of 50 patients each: 1 versus 3 weeks of antibiotic therapy for residual osteomyelitis (positive microbiological samples of the residual bone stump); or 1 versus 4 days for remaining soft tissue infection. The second RCT will randomize the conservative approach (only surgical debridement without in toto amputation) in two arms with 50 patients each: 10 versus 20 days of antibiotic therapy for soft tissue infections; and 3 versus 6 weeks for osteomyelitis. All participants will have professional wound debridement, adequate off-loading, angiology evaluation, and a concomitant surgical, re-educational, podiatric, internist and infectiology care. During the surgeries, we will collect tissues for BioBanking and future laboratory studies. Discussion: Both parallel RCTs will respond to frequent questions regarding the duration of antibiotic use in the both major subsets of DFIs, to ensure the quality of care, and to avoid unnecessary excesses in terms of surgery and antibiotic use. Trial registration: ClinicalTrials.gov, NCT04081792. Registered on 4 September 2019.
BackgroundPerioperative antibiotic prophylaxis in non-infected orthopedic surgery is evident, in contrast to prophylaxis during surgery for infection. Epidemiological data are lacking for this particular situation.Methods and findingsIt is a single-center cohort on iterative surgical site infections (SSIs) in infected orthopedic patients. We included 2480 first episodes of orthopedic infections (median age 56 years and 833 immune-suppressed): implant-related infections (n = 648), osteoarticular infections (1153), and 1327 soft tissue infections. The median number of debridement was 1 (range, 1–15 interventions). Overall, 1617 infections (65%) were debrided once compared to 862 cases that were operated multiple times (35%). Upon iterative intraoperative tissue sampling, we detected pathogens in 507 cases (507/862; 59%), of which 241 (242/507; 48%) corresponded to the initial species at the first debridement. We witnessed 265 new SSIs (11% of the cohort) that were resistant to current antibiotic therapy in 174 cases (7% of the cohort). In multivariate analysis, iterative surgical debridements that were performed under current antibiotic administration were associated with new SSIs (odds ratio 1.6, 95%CI 1.2–2.2); mostly occurring after the 2nd debridement. However, we failed to define an ideal hypothetic prophylaxis during antibiotic therapy to prevent further SSIs.ConclusionsSelection of new pathogens resistant to ongoing antibiotic therapy occurs frequently during iterative debridement in orthopedic infections, especially after the 2nd debridement. The new pathogens are however unpredictable. The prevention, if feasible, probably relies on surgical performance and wise indications for re-debridement instead of new maximal prophylactic antibiotic coverage in addition to current therapeutic regimens.
Background: Few studies address the appropriate duration of antibiotic therapy for diabetic foot infections (DFI); with or without amputation. We will perform two randomized clinical trials (RCT) to reduce the antibiotic use and associated adverse events in DFI. Methods: We hypothesize that shorter durations of post-debridement systemic antibiotic therapy are non-inferior (10% margin, 80% power, ɑ 5%) to existing (long) durations and we will perform two unblinded RCTs with a total of 400 DFI episodes (randomization 1:1) from 2019 to 2022. The primary outcome for both RCT is “remission of infection” after a minimal follow-up of two months. The secondary outcomes for both RCT are the incidence of adverse events and the overall treatment costs. The First RCT will allocate the total therapeutic amputations in two arms of 50 patients each: 1 vs. 3 weeks of antibiotic therapy for residual osteomyelitis (positive microbiological samples of the residual bone stump); or 1 vs. 4 days for remaining soft tissue infection. The Second RCT will randomize the conservative approach (only surgical debridement without in toto amputation) in two arms with 50 patients each: 10 vs. 20 days of antibiotic therapy for soft tissue infections; and 3 vs. 6 weeks for osteomyelitis. All participants will have professional wound debridement, adequate off-loading, angiology evaluation, and a concomitant surgical, re-educational, podiatric, internist and infectiology care. During the surgeries, we will collect tissues for BioBanking and future laboratory studies. Discussion: Both parellel RCTs will repond to frequent questions regarding the duration of antibiotic use in the both major subsets of DFIs, to assure the quality of care, and to avoid unnecessary excesses in terms of surgery and antibiotic use. Trial registration: ClinicalTrial.gov NCT04081792. Registered on 4th September 2019. Protocol version: 2 (15th July 2019)
Background: There are several open scientific questions regarding the optimal antibiotic treatment of spinal infections (SIs) with or without an implant. The duration of postsurgical antibiotic therapy is debated. Methods: We will perform two unblinded randomized controlled trials (RCTs). We hypothesize that shorter durations of systemic antibiotic therapy after surgery for SI are noninferior (10% margin, 80% power, α = 5%) to existing (long) treatment durations. The RCTs allocate the participants to two arms of 2 × 59 episodes each: 3 vs. 6 weeks of targeted postsurgical systemic antibiotic therapy for implant-free SIs or 6 vs. 12 weeks for implant-related SIs. This equals a total of 236 adult SI episodes (randomization scheme 1:1) with a minimal follow-up of 12 months. All participants receive concomitant multidisciplinary surgical, re-educational, internist, and infectious disease care. We will perform three interim analyses that are evaluated, in a blinded analysis, by an independent study data monitoring committee. Besides the primary outcome of remission, we will also assess adverse events of antibiotic therapy, changes of the patient's nutritional status, the influence of immune suppression, total costs, functional scores, and the timely evolution of the (surgical) wounds. We define infection as the presence of local signs of inflammation (pus, wound discharge, calor, and rubor) together with microbiological evidence of the same pathogen(s) in at least two intraoperative samples, and we define remission as the absence of clinical, laboratory, and/or radiological evidence of (former or new) infection. Discussion: Provided that there is adequate surgical debridement, both RCTs will potentially enable prescription of less antibiotics during the therapy of SI, with potentially less adverse events and reduced overall costs.
Introduction The most frequently prescribed empirical antibiotic agents for mild and moderate diabetic foot infections (DFIs) are amino‐penicillins and second‐generation cephalosporins that do not cover Pseudomonas spp. Many clinicians believe they can predict the involvement of Pseudomonas in a DFI by visual and/or olfactory clues, but no data support this assertion. Methods In this prospective observational study, we separately asked 13 experienced (median 11 years) healthcare workers whether they thought the Pseudomonas spp. would be implicated in the DFI. Their predictions were compared with the results of cultures of deep/intraoperative specimens and/or the clinical remission of DFI achieved with antibiotic agents that did not cover Pseudomonas. Results Among 221 DFI episodes in 88 individual patients, intraoperative tissue cultures grew Pseudomonas in 22 cases (10%, including six bone samples). The presence of Pseudomonas was correctly predicted with a sensitivity of 0.32, specificity of 0.84, positive predictive value of 0.18 and negative predictive value 0.92. Despite two feedbacks of the interim results and a 2‐year period, the clinicians' predictive performance did not improve. Conclusion The combined visual and olfactory performance of experienced clinicians in predicting the presence of Pseudomonas in a DFI was moderate, with better specificity than sensitivity, and did not improve over time. Further investigations are needed to determine whether clinicians should use a negative prediction of the presence of Pseudomonas in a DFI, especially in settings with a high prevalence of pseudomonal DFIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.