Ocean colour remote sensing from sun-synchronous polar orbiting satellites has become well-established as a tool for extracting information on phytoplankton and suspended particulate matter and related processes in regional seas. New data is now becoming available from optical remote sensors on geostationary satellites and provides a much higher temporal resolution, typically an image once or more per hour during daylight compared to once per day. This higher temporal resolution opens up obvious opportunities for dramatically improving the data availability in periods of scattered clouds and for resolving fast processes such as tidal or diurnal variability of phytoplankton or suspended particulate matter. As the science community starts to explore this new data source, further new applications are likely to emerge. However, the geostationary orbit presents also new algorithmic challenges. The coverage of high latitudes is limited by the difficulties of atmospheric correction at very high sensor zenith angle and ultimately by the earth's curvature. Exploitation of the new possibilities of viewing the earth for a range of sun zenith angles over the day also stimulates a need to perform accurate atmospheric correction at high sun zenith angle. Traditional pixel-by-pixel data processing algorithms could be supplemented by information on the temporal coherency of data over the day thus potentially improving data quality, by adding constraints to the inversion problem, or data quality control, by a posteriori analysis of time series. This review assesses the challenges and opportunities of geostationary ocean colour, with emphasis on the data processing algorithms that will need to be improved or developed to fully exploit the potential of this data source. Examples are drawn from recent results using data from the GOCI and SEVIRI sensors.
Sensor synergy and close cooperation between experimentalists and modelers is required to gain more insight into complex cloud structures and processes. On a global scale, clouds have a strong cooling effect on our climate: more solar radiation is reflected back to space than thermal surface radiation is trapped in the atmosphere. However, because radiation reacts on the instantaneous cloudy atmosphere and not on some climatological mean, the physical processes leading to the overall radiative effect strongly depend on the spatial distribution and structure of clouds. AFFILIATIONS: CREWELL, LOHNERT, SIMMER, AND VENEMA-Meteorologi-
Abstract. The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Relative humidity is large in the mist-fog-mist cycle, and aerosols most efficient in interacting with visible radiation are hydrated and compose the accumulation mode. Measurements of the microphysical and optical properties of these hydrated aerosols with diameters larger than 0.4 µm were carried out near Paris, during November 2011, under ambient conditions. Eleven mist-fog-mist cycles were observed, with a cumulated fog duration of 96 h, and a cumulated mist-fogmist cycle duration of 240 h.In mist, aerosols grew by taking up water at relative humidities larger than 93 %, causing a visibility decrease below 5 km. While visibility decreased down from 5 to a few kilometres, the mean size of the hydrated aerosols increased, and their number concentration (N ha ) increased from approximately 160 to approximately 600 cm −3 . When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m −3 . Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and some aerosols achieved diameters larger than 2.5 µm. The mean transition diameter between the aerosol accumulation mode and the small droplet mode was 4.0 ± 1.1 µm. N ha also increased on average by 60 % after fog formation. Consequently, the mean contribution to extinction in fog was 20 ± 15 % from hydrated aerosols smaller than 2.5 µm and 6 ± 7 % from larger aerosols. The standard deviation was large because of the large variability of N ha in fog, which could be smaller than in mist or 3 times larger.The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 N ha (N ha in cm −3 and particle extinction coefficient in Mm −1 ). We observed an influence of the main formation process on N ha , but not on the contribution to fog extinction by aerosols. Indeed, in fogs formed by stratus lowering (STL), the mean N ha was 360 ± 140 cm −3 , close to the value observed in mist, while in fogs formed by nocturnal radiative cooling (RAD) under cloud-free sky, the mean N ha was 600 ± 350 cm −3 . But because visibility (extinction) in fog was also lower (larger) in RAD than in STL fogs, the contribution by aerosols to extinction depended little on the fog formation process. Similarly, the proportion of hydrated aerosols over all aerosols (dry and hydrated) did not depend on the fog formation process.Measurements showed that visibility in RAD fogs was smaller than in STL fogs due to three factors: (1) LWC was larger in RAD than in STL fogs, (2) droplets were smaller, (3) hydrated aerosols composing the accumulation mode were more numerous.
Abstract. The study assesses the contribution of aerosols to the extinction of visible radiation in the mist-fog-mist cycle. Measurements of the microphysical and optical properties of hydrated aerosols with diameters larger than 400 nm, composing the accumulation mode, which are the most efficient to interact with visible radiation, were carried out near Paris, during November 2011, in ambient conditions. Eleven mist-fog-mist cycles were observed, with cumulated fog duration of 95 h, and cumulated mist-fog-mist duration of 240 h. In mist, aerosols grew up by taking up water at relative humidities larger than 93%, causing a visibility decrease below 5 km. While visibility decreased down to few km, the mean size of the hydrated aerosols increased, and their number concentration (Nha) increased from approximately 160 to approximately 600 cm−3. When fog formed, droplets became the strongest contributors to visible radiation extinction, and liquid water content (LWC) increased beyond 7 mg m−3. Hydrated aerosols of the accumulation mode co-existed with droplets, as interstitial non-activated aerosols. Their size continued to increase, and a significant proportion of aerosols achieved diameters larger than 2.5 μm. The mean transition diameter between the accumulation mode and the small droplet mode was 4.0 ± 1.1 μm. Moreover Nha increased on average by 60% after fog formation. Consequently the mean aerosol contribution to extinction in fog was 20 ± 15% for diameter smaller than 2.5 μm and 6 ± 7% beyond. The standard deviation is large because of the large variability of Nha in fog, which could be smaller than in mist or three times larger. The particle extinction coefficient in fog can be computed as the sum of a droplet component and an aerosol component, which can be approximated by 3.5 Nha (Nha in cm−3 and particle extinction coefficient in Mm−1). We observed an influence of the main formation process on Nha, but not on the contribution to fog extinction by aerosols. Indeed in fogs formed by stratus lowering (STL), the mean Nha was 360 ± 140 cm−3, close to the value observed in mist, while in fogs formed by nocturnal radiative cooling under cloud-free sky (RAD), the mean Nha was 600 ± 350 cm−3. But because visibility (extinction) in fog was also lower (larger) in RAD than in STL fogs, the contribution by aerosols to extinction depended little on the fog formation process. Similarly, the proportion of hydrated aerosols over all aerosols (dry and hydrated) did not depend on the fog formation process. Measurements show that visibility in RAD fogs was smaller than in STL fogs because: (1) LWC was larger in RAD than in STL fogs, (2) droplets were smaller, (3) as already said, hydrated aerosols composing the accumulation mode were more numerous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.