Three two-dimensional (2D) debris-flow simulation models are applied to two large welldocumented debris-flow events which caused major deposition of solid material on the fan. The models are based on a Voellmy fluid rheology reflecting turbulent-like and basal frictional stresses, a quadratic rheologic formulation including Bingham, collisional and turbulent stresses, and a HerschelYBulkley rheology representing a viscoplastic fluid. The rheologic or friction parameters of the models are either assumed a priori or adjusted to best match field observations. All three models are capable of reasonably reproducing the depositional pattern on the alluvial fan after the models have been calibrated using historical data from the torrent. Accurate representation of the channel and fan topography is especially important to achieve a good replication of the observed deposition pattern.
Abstract. Steep mountain catchments typically experience large sediment pulses from hillslopes which are stored in headwater channels and remobilized by debris-flows or bedload transport. Event-based sediment budget monitoring in the active Manival debris-flow torrent in the French Alps during a two-year period gave insights into the catchment-scale sediment routing during moderate rainfall intensities which occur several times each year. The monitoring was based on intensive topographic resurveys of low-and high-order channels using different techniques (cross-section surveys with total station and high-resolution channel surveys with terrestrial and airborne laser scanning). Data on sediment output volumes from the main channel were obtained by a sediment trap. Two debris-flows were observed, as well as several bedload transport flow events. Sediment budget analysis of the two debris-flows revealed that most of the debris-flow volumes were supplied by channel scouring (more than 92 %). Bedload transport during autumn contributed to the sediment recharge of high-order channels by the deposition of large gravel wedges. This process is recognized as being fundamental for debris-flow occurrence during the subsequent spring and summer. A time shift of scour-and-fill sequences was observed between low-and high-order channels, revealing the discontinuous sediment transfer in the catchment during common flow events. A conceptual model of sediment routing for different event magnitude is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.