We present a deep neural network-based approach to image quality assessment (IQA). The network is trained end-to-end and comprises ten convolutional layers and five pooling layers for feature extraction, and two fully connected layers for regression, which makes it significantly deeper than related IQA models. Unique features of the proposed architecture are that: 1) with slight adaptations it can be used in a no-reference (NR) as well as in a full-reference (FR) IQA setting and 2) it allows for joint learning of local quality and local weights, i.e., relative importance of local quality to the global quality estimate, in an unified framework. Our approach is purely data-driven and does not rely on hand-crafted features or other types of prior domain knowledge about the human visual system or image statistics. We evaluate the proposed approach on the LIVE, CISQ, and TID2013 databases as well as the LIVE In the wild image quality challenge database and show superior performance to state-of-the-art NR and FR IQA methods. Finally, cross-database evaluation shows a high ability to generalize between different databases, indicating a high robustness of the learned features.
This paper presents a no reference image (NR) quality assessment (IQA) method based on a deep convolutional neural network (CNN). The CNN takes unpreprocessed image patches as an input and estimates the quality without employing any domain knowledge. By that, features and natural scene statistics are learnt purely data driven and combined with pooling and regression in one framework. We evaluate the network on the LIVE database and achieve a linear Pearson correlation superior to state-of-the-art NR IQA methods. We also apply the network to the image forensics task of decoder-sided quantization parameter estimation and also here achieve correlations of r = 0.989
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.