The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.
The Crumbs complex that also contains the cortical proteins Stardust and DPATJ (a homologue of PATJ), is crucial for the building of epithelial monolayers in Drosophila. Although loss of function of the Crumbs or Stardust genes prevents the stabilization of a belt of adherens junctions at the apico-lateral border of the cells, no phenotype has been described for the Dpatj gene and its role in epithelial morphogenesis and polarity remains unknown. We have produced downregulated PATJ stable lines of Caco2 to clarify its role in epithelial morphogenesis. In PATJ knockdown cells, Pals1 (a Stardust homologue) is no longer associated with tight junctions whereas Crumbs3 (Crb3) is accumulated into a compartment spatially close to the apical membrane and related to early endosomes. Furthermore, occludin and ZO-3, two proteins of tight junctions are mislocalized on the lateral membrane indicating that PATJ plays a novel role in the building of tight junctions by providing a link between their lateral and apical components. Thus, PATJ stabilizes the Crb3 complex and regulates the spatial concentration of several components at the border between the apical and lateral domains.
Hook2 partitions between the Golgi apparatus and the centrosome, and its depletion hinders ciliogenesis after mother centriole maturation without Golgi breakdown. Hook2 interacts with PCM1 and Rab8a, and Hook2-depleted cells can be forced to grow primary cilia by overexpressing GFP::Rab8a, indicating that Rab8a acts downstream of Hook2 and PCM1.
Cell polarity is an essential feature of most eukaryotic cells, especially epithelial cells in multicellular animals. Polarity protein complexes that regulate epithelial organization have been identified. In this review, it is proposed to describe how the Crumbs complex acts in the process of cell polarity and epithelial organization. During the last decade, several partners of Crumbs, an apical transmembrane protein, have been identified and their direct or indirect associations with the cytoplasmic domain of Crumbs have been dissected. In addition, mutants of several of the genes encoding proteins belonging to the Crumbs network have been obtained in animals ranging from flies to mouse, which have led to a better understanding of their functions in vivo. These functions include polarity axis formation, stabilization of epithelial apico-lateral junctions, photoreceptor organization and ciliogenesis. Since human CRUMBS1 mutations are associated with retina degeneration, it has become essential to define Crumbs network and to understand exactly how this network acts in polarized cells, with a view to developing suitable therapeutic approaches for treating this severe degenerative disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.