SUMMARYThis article is devoted to the modelling of thin beams undergoing finite deformations essentially due to bending and torsion and to their numerical resolution by the finite element method. The solution proposed here differs from the approaches usually implemented to treat thin beams, as it can be qualified as 'geometrically exact'. Two numerical models are proposed. The first one is a non-linear Euler-Bernoulli model while the second one is a non-linear Rayleigh model. The finite element method is tested on several numerical examples in statics and dynamics, and validated through comparison with analytical solutions, experimental observations and the geometrically exact approach of the Reissner beam theory initiated by Simo. The numerical result shows that this approach is a good alternative to the modelling of non-linear beams, especially in statics.
This article is devoted to the dynamics of flexible multi-body systems and to their links with a fundamental set of equations discovered by H. Poincaré one hundred years ago [1]. These equations, called "Poincaré-Chetayev equations", are today known to be the foundation of the Lagrangian reduction theory. Starting with the extension of these equations to a Cosserat medium, we show that the two basic sets of equations used in flexible multi-body dynamics. The generalized Newton-Euler model of flexible multi-body systems in the floating frame approach and the partial differential equations of the nonlinear geometrically exact theory in the Galilean approach, are Poincaré-Chetayev equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.