In this paper, a fault diagnosis method is developed for systems described by multimodels. The main contribution consists in the design of a new Fault Detection and Isolation scheme (FDI) through an adaptive filter for such systems. Based on the assumption that dynamic behavior of the process is described by a multi-model approach around different operating points, a set of residual is established in order to generate weighting functions robust to faults. These robust weighting functions are directly linked with the adaptive filter effectiveness which provides multiple fault magnitude estimations for the whole operating range of the system. Stability conditions of the adaptive filter are studied and its performances are tested using an hydraulic system.
This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both faultfree and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the stabilizing output feedback control problem. An example illustrates the effectiveness and performances of the proposed FTC method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.