The harbour porpoise Phocoena phocoena is a small marine predator with a high conservation status in Europe and the USA. To protect the species effectively, it is crucial to understand its movement patterns and how the distribution of intensively used foraging areas can be predicted from environmental conditions. Here, we investigated the influence of both static and dynamic environmental conditions on large-scale harbour porpoise movements in the North Sea. We used long-term movement data from 57 individuals tracked during 1999-2017 in a state-space model to estimate the underlying behavioural states, i.e. whether animals used area-restricted or directed movements. Subsequently, we assessed whether the probability of using area-restricted movements was related to environmental conditions using a generalized linear mixed model. Harbour porpoises were more likely to use area-restricted movements in areas with low salinity levels, relatively high chlorophyll a concentrations and low current velocity, and in areas with steep bottom slopes, suggesting that such areas are important foraging grounds for porpoises. Our study identifies environmental parameters of relevance for predicting harbour porpoise foraging hot spots over space and time in a dynamic system. The study illustrates how movement patterns and data on environmental conditions can be combined, which is valuable to the conservation of marine mammals.
Quantifying intraspecific variation in movement behaviour of marine predators and the underlying environmental drivers is important to inform conservation management of protected species. Here, we provide the first empirical data on fine-scale movements of free-ranging harbour porpoises (Phocoena phocoena) in their natural habitat. Data were obtained from six individuals, tagged in two areas of the Danish North Sea, that were equipped with Global Positioning System (GPS) and dive recorder units (V-tags). We used multi-model inference and model averaging to evaluate the relative importance of various static and dynamic environmental conditions on the movement characteristics: speed, turning angle, dive duration, dive depth, dive wiggliness (a proxy for prey chasing behaviour), and post-dive duration. Despite substantial individual differences in horizontal and vertical movement patterns, we found that all the tracked porpoises responded similar to variation in environmental conditions and displayed movements that indicate a higher likelihood of foraging behaviour in shallower and more saline waters. Our study contributes to the identification of important feeding areas for porpoises and can be used to improve existing movement-based simulation models that aim to assess the impact of anthropogenic disturbance on harbour porpoise populations.Electronic supplementary materialThe online version of this article (10.1007/s00227-018-3346-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.