International audienceNowadays, computing hardware continues to move toward more parallelism and more heterogeneity, to obtain more computing power. From personal computers to supercomputers, we can find several levels of parallelism expressed by the interconnections of multi-core and many-core accelerators. On the other hand, computing software needs to adapt to this trend, and programmers can use parallel programming models (PPM) to fulfil this difficult task. There are different PPMs available that are based on tasks, directives, or low level languages or library. These offer higher or lower abstraction levels from the architecture by handling their own syntax. However, to offer an efficient PPM with a greater (additional) high-levelabstraction level while saving on performance, one idea is to restrict this to a specific domain and to adapt it to a family of applications. In the present study, we propose a high-level PPM specific to digital signal processing applications. It is based on data-flow graph models of computation, and a dynamic runtime model of execution (StarPU). We show how the user can easily express this digital signal processing application, and can take advantage of task, data and graph parallelism in the implementation, to enhance the performances of targeted heterogeneous clusters composed of CPUs and different accelerators (e.g., GPU, Xeon Phi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.