Wildebeest-associated malignant catarrhal fever (WA-MCF), an acute lymphoproliferative disease of cattle caused by alcelaphine herpesvirus 1 (AlHV-1), remains a significant constraint to cattle production in nomadic pastoralist systems in eastern and southern Africa. The transmission of WA-MCF is dependent on the presence of the wildlife reservoir, i.e. wildebeest, belonging to the species Connochaetes taurinus and Connochaetes gnou; hence, the distribution of WA-MCF is largely restricted to Kenya, Tanzania and the Republic of South Africa, where wildebeest are present. WA-MCF is analogous to sheep-associated MCF (SA-MCF) in many aspects, with the latter having sheep as its reservoir host and a more global distribution, mainly in developed countries with intensive livestock production systems. However, unlike SA-MCF, the geographic seclusion of WA-MCF may have contributed to an apparent neglect in research efforts aimed at increased biological understanding and control of the disease. This review aims to highlight the importance of WA-MCF and the need for intensified research towards measures for its integrated control. We discuss current knowledge on transmission and geographical distribution in eastern and southern Africa and the burden of WA-MCF in affected vulnerable pastoral communities in Africa. Recent findings towards vaccine development and pertinent knowledge gaps for future research efforts on WA-MCF are also considered. Finally, integrated control of WA-MCF based on a logical three-pronged framework is proposed, contextualizing vaccine development, next-generation diagnostics, and diversity studies targeted to the viral pathogen and cattle hosts.
Very little is known about the influence of massive and long distance migration on parasite epidemiology. Migration can simultaneously minimize exposure to common parasites in their habitats and increase exposure to novel pathogens from new environments and habitats encountered during migration, while physiological stress during long distance movement can lead to immune suppression, which makes migrants vulnerable to parasites. In this paper, we investigated the diversity, prevalence, parasite load, co-infection patterns and predilection sites of adult gastrointestinal helminths in 130 migrating wildebeests and tested for their relation with animal age, sex and migration time (which also could indicate different migration routes), and compared them with the non-migratory wildebeest. Surprisingly, only four parasite species were found, Oesophagostomum columbianum, Haemonchus placei, Calicophoron raja and Moniezia expansa, which were lower than in non-migratory wildebeest reported in the literature. These parasites were generalists, infecting livestock, and suggests that wildebeest and livestock, because of their interaction during migration, have a cross-infection risk. There was a negative relation between parasites diversity, prevalence and intensity of infection, and host age, which suggests that wildebeests acquire protective immunity against these parasites as they get older. Prevalence and intensity of infection were higher among wildebeest crossing the Mara Bridge (early migrants) compared to those crossing the Serena (late migrants), which suggests that early migrants (or migrants originating from different areas) have varying infection intensities. The prevalence and intensity of infection were higher in males compared to females and may be due to ecological, behavioural, or physiological differences between males and females. Our findings compared to those of previous studies suggest that migration may provide a mechanism to minimize exposure of hosts to common parasites through migratory escape, but this result awaits examination of helminths epidemiology of non-migratory wildebeests from areas of migrant origins. The potential parasitic cross-infection between wildebeests and livestock is a real risk to be taken into account in the management of wildebeest migration corridors.
Etorphine-azaperone immobilisation was evaluated for translocation of Masai giraffes. Nine giraffes were darted with 0.012 ± 0.001 mg/kg etorphine and 0.07 ± 0.01 mg/kg azaperone. Once ataxic, giraffes were roped for recumbency and restrained manually. Naltrexone (3 mg/mg etorphine) was immediately given intravenously to reverse etorphine-related side effects. Protocol evaluation included physiological monitoring, blood-gas analyses, anaesthetic times, and quality scores (1 = excellent, 4 = poor). Sedation onset and recumbency were achieved in 2.6 ± 0.8 and 5.6 ± 1.4 min. Cardio-respiratory function (HR = 70 ± 16, RR = 32 ± 8, MAP = 132 ± 16) and temperature (37.8 ± 0.5) were stable. Arterial gas analysis showed hypoxaemia in some individuals (PaO2 = 67 ± 8 mmHg) and metabolic acidosis (pH = 7.23 ± 0.05, PaCO2 = 34 ± 4 mmHg, HCO3− = 12.9 ± 1.2 mmol/l). Minor startle response occurred, while higher induction-induced excitement correlated to longer inductions, worse restraint, and decreased HCO3−. After 19 ± 3.5 min of restraint, giraffes were allowed to stand and were loaded onto a chariot. Immobilisations were good and scored 2 (1–3). Inductions and recoveries were smooth and scored 1 (1–2). Translocations were uneventful and no complications occurred in 14-days boma follow-up.
Rhipicephalus appendiculatus is the major tick vector of Theileria parva, an apicomplexan protozoan parasite that causes the most economically important and lethal disease of cattle in East and central Africa. The African cape buffalo (Syncerus caffer) is the major wildlife host of T. parva from southern Uganda and Kenya to southern Africa. We show herein that R. appendiculatus appears to be absent from the two largest national parks in northern Uganda. Syncerus caffer is common in both of these national parks, specifically Murchison falls (MFNP) and Kidepo Valley (KVNP). We re-confirmed the previously reported absence of T. parva in buffalo sampled in the two northern parks based on RLB data using a nested PCR based on the T. parva p104 gene. By contrast, T. parva-infected R. appendiculatus ticks and parasite-infected buffalo were present in Lake Mburo (LMNP) in South central Uganda. This suggests that the distribution of R. appendiculatus, which is predicted to include the higher rainfall regions of northern Uganda, may be limited by additional, as yet unknown factors.
The use of biopsy darts for remote collection of tissue samples from free-ranging terrestrial and aquatic animal species has gained popularity in the recent past. The success of darting is very important since scientists may not have many chances to re-dart the same animal, especially with the free-ranging elusive wildlife species. We used wildebeest (Connochaetes taurinus) as a model to estimate the optimum shooting distance, pressure and the shot part of the body through which a researcher can optimize the success and amount of tissue collected from similar wild land mammalian species. Wildebeests were darted at six categories of distances ranging between 10 and 45 m and dart gun pressures of 5–14 millibar. The number of failed darts increased by increasing the darting distance: 0% (10 m), 0% (20 m), 6% (30 m), 20% (35 m), 71% (40 m), and 67% (45 m). There was a notable effect of the distances on the amount of tissue collected 20 m offered the best results. Dart gun pressure had no effect on the amount of tissue samples obtained. The amount of tissue obtained from successful darts was the same whether the animal was darted on the shoulder or thigh. In this paper, we present a practical guideline for remote biopsy darting of wildebeest to obtain optimum amount of tissue samples, which could be generalized for similar wild land mammalian species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.