Natural SIV infection of sooty mangabeys (SMs) is nonprogressive despite chronic virus replication. Strikingly, it is characterized by low levels of immune activation, while pathogenic SIV infection of rhesus macaques (RMs) is associated with chronic immune activation. To elucidate the mechanisms underlying this intriguing phenotype, we used high-density oligonucleotide microarrays to longitudinally assess host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs was consistently associated with a robust innate immune response, including widespread upregulation of IFN-stimulated genes (ISGs) in blood and lymph nodes. While SMs exhibited a rapid resolution of ISG expression and immune activation, both responses were observed chronically in RMs. Systems biology analysis indicated that expression of the lymphocyte inhibitory receptor LAG3, a marker of T cell exhaustion, correlated with immune activation in SIV-infected RMs but not SMs. Our findings suggest that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low levels of immune activation characteristic of SMs chronically infected with SIV.
MicroRNAs (miRNAs) are small regulatory RNAs that serve fundamental biological roles across eukaryotic species. We describe a new method for high-throughput miRNA detection. The technique is termed the RNA-primed, array-based Klenow enzyme (RAKE) assay, because it involves on-slide application of the Klenow fragment of DNA polymerase I to extend unmodified miRNAs hybridized to immobilized DNA probes. We used RAKE to study human cell lines and brain tumors. We show that the RAKE assay is sensitive and specific for miRNAs and is ideally suited for rapid expression profiling of all known miRNAs. RAKE offers unique advantages for specificity over northern blots or other microarray-based expression profiling platforms. Furthermore, we demonstrate that miRNAs can be isolated and profiled from formalin-fixed paraffin-embedded tissue, which opens up new opportunities for analyses of small RNAs from archival human tissue. The RAKE assay is theoretically versatile and may be used for other applications, such as viral gene profiling.
Studies using low-resolution methods to assess gene expression during preimplantation mouse development indicate that changes in gene expression either precede or occur concomitantly with the major morphological transitions, that is, conversion of the oocyte to totipotent 2-cell blastomeres, compaction, and blastocyst formation. Using microarrays, we characterized global changes in gene expression and used Expression Analysis Systematic Explorer (EASE) to identify biological and molecular processes that accompany and likely underlie these transitions. The analysis confirmed previously described processes or events, but more important, EASE revealed new insights. Response to DNA damage and DNA repair genes are overrepresented in the oocyte compared to 1-cell through blastocyst stages and may reflect the oocyte's response to selective pressures to insure genomic integrity; fertilization results in changes in the transcript profile in the 1-cell embryo that are far greater than previously recognized; and genome activation during 2-cell stage may not be as global and promiscuous as previously proposed, but rather far more selective, with genes involved in transcription and RNA processing being preferentially expressed. These results validate this hypothesis-generating approach by identifying genes involved in critical biological processes that can be the subject of a more traditional hypothesis-driven approach.
High-throughput RNA sequencing (RNA-seq) dramatically expands the potential for novel genomics discoveries, but the wide variety of platforms, protocols and performance has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We tested replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (polyA-selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies’ PGM and Proton, Pacific Biosciences RS and Roche’s 454). The results show high intra-platform and inter-platform concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. These data also demonstrate that ribosomal RNA depletion can both enable effective analysis of degraded RNA samples and be readily compared to polyA-enriched fractions. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.
microRNAs (miRNAs) are small (~22 nucleotide) regulatory RNAs which play fundamental roles in many biological processes. Recent studies have shown that the expression of many miRNAs is altered in various human tumors and some miRNAs may function as oncogenes or tumor suppressor genes. However, with the exception of glioblastoma multiforme, the expression of miRNAs in brain tumors is unknown. Furthermore, methods to profile miRNAs from formalin-fixed, paraffin-embedded (FFPE) archival tissues or to study their cellular and subcellular localization in FFPE tissues have been lacking. Here we report the coordinated miRNA expression analysis from the tissue level to the subcellular level, using the RAKE (RNA-primed, array-based, Klenow Enzyme) miRNA microarray platform in conjunction with Locked Nucleic Acid (LNA)-based in situ hybridization (LNA-ISH) on archival FFPE human brains and oligodendroglial tumors. The ability to profile miRNAs from archival tissues at the tissue level, by RAKE microarrays, and at the cellular level by LNA-ISH, will accelerate studies of miRNAs in human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.