The drone has played an important role in security and surveillance. However, due to the limited computing power and energy resources, more efficient systems are required for surveillance tasks. In this paper, we address detection and tracking of moving vehicles with a small drone. A moving object detection scheme has been developed based on frame registration and subtraction followed by morphological filtering and false alarm removing. The center position of the detected object area is the input to the tracking target as a measurement. The Kalman filter estimates the position and velocity of the target based on the measurement nearest to the state prediction. We propose a new data association scheme for multiple measurements on a single target. This track association method consists of the hypothesis testing between two tracks and track fusion through track selection and termination. We reduce redundant tracks on the same target and maintain the track with the least estimation error. In the experiment, drones flying at an altitude of 150 m captured two videos in an urban environment. There are a total of 9 and 23 moving vehicles in each video; the detection rates are 92% and 89%, respectively. The number of valid tracks is significantly reduced from 13 to 10 and 56 to 26 in the first and the second video, respectively. In the first video, the average position RMSE of two merged tracks are improved by 83.6% when only the fused states are considered. In the second video, the average position and velocity RMSE are 1.21 m and 1.97 m/s, showing the robustness of the proposed system.
Small unmanned aerial vehicles can be effectively used for aerial video surveillance. Although the field of view of the camera mounted on the drone is limited, flying drones can expand their surveillance coverage. In this paper, we address the detection of moving targets in urban environments with a moving drone. The drone moves at a constant velocity and captures video clips of moving vehicles such as cars, buses, and bicycles. Moving vehicle detection consists of frame registration and subtraction followed by thresholding, morphological operations and false blob reduction. First, two consecutive frames are registered; the coordinates of the next frame are compensated by a displacement vector that minimizes the sum of absolute difference between the two frames. Second, the next compensated frame is subtracted from the current frame, and the binary image is generated by thresholding. Finally, morphological operations and false alarm removal extract the target blobs. In the experiments, the drone flies at a constant speed of 5.1 m/s at an altitude of 150 m while capturing video clips of nine moving targets. The detection and false alarm rates as well as the receiver operating characteristic curves are obtained, and the drone velocities in the x and y directions are estimated by the displacement vector. The average detection rate ranges from 90% to 97% while the false alarm rate ranges from 0.06 to 0.5. The root mean square error of the speed is 0.07 m/s when the reference frame is fixed, showing the robustness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.