Summary Background Retrospective evidence indicates that disease progression after first-line chemotherapy for metastatic non-small cell lung cancer (NSCLC) occurs most often at sites of disease known to exist at baseline. However, the potential benefit of aggressive local consolidative therapy (LCT) on progression-free survival (PFS) for patients with oligometastatic NSCLC is unknown. Methods We conducted a multicenter randomized study (NCT01725165; currently ongoing but not recruiting participants) to assess the effect of LCT on progression-free survival ((PFS). Eligible patients hadwere (1) histologic confirmation of (2) stage IV NSCLC, (3) ≤3 disease sites after systemic therapy, and (4) no disease progression before randomization. Front line therapy was ≥4 cycles of platinum doublet therapy or ≥3 months of inhibitors of epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) for patients with EGFR mutations or ALK rearrangements. Patients were randomized to either LCT ([chemo]radiation or resection of all lesions) +/− maintenance therapy versus maintenance therapy/observation only. Maintenance therapy was recommended based on a list of approved regimens, and observation was defined as close surveillance without cytotoxic therapy. Randomization was not masked and was balanced dynamically on five factors: number of metastases, response to initial therapy, central nervous system metastases, intrathoracic nodal status, and EGFR/ALK status. The primary endpoint was PFS, powered to detect an increase from 4 months to 7 months (hazard ratio [HR}=0.57) using intent-to-treat analysis. The plan was to study 94 randomized patients, with an interim analysis at 44 events. PFS, overall survival (OS), and time to develop a new lesion were compared between arms with log-rank tests. Results The study was terminated early after treatment of 49 patients (25 LCT, 24 control), when at a median follow-up time for PFS of 18.7 months, the median PFS time in the LCT group was 11.9 months (90% confidence interval [CI] 5.72 ,20.90) versus 3.9 months (90% CI 2.30, 6.64) in the maintenance group (HR=0.35, 90% CI 0.18,0.66, log rank p=0.005). Toxicity was similar between groups, with no grade 4–5 events. Grade 3 or higher adverse events in the maintenance therapy arm were fatigue (n=1) and anemia (n=1). In the LCT arm, Grade 3 events were: esophagitis (n=2), anemia (n=1), pneumothorax (n=1), and abdominal pain (n=1). Overall survival data are immature, with only 14 deaths recorded. Interpretation LCT +/− maintenance therapy for patients with ≤3 metastases from NSCLC that did not progress after initial systemic therapy improved PFS relative to maintenance therapy alone. These findings imply that aggressive local therapy should be further explored in phase III trials as a standard treatment option in this clinical scenario.
PURPOSE Our previously published findings reported that local consolidative therapy (LCT) with radiotherapy or surgery improved progression-free survival (PFS) and delayed new disease in patients with oligometastatic non–small-cell lung cancer (NSCLC) that did not progress after front-line systemic therapy. Herein, we present the longer-term overall survival (OS) results accompanied by additional secondary end points. PATIENTS AND METHODS This multicenter, randomized, phase II trial enrolled patients with stage IV NSCLC, three or fewer metastases, and no progression at 3 or more months after front-line systemic therapy. Patients were randomly assigned (1:1) to maintenance therapy or observation (MT/O) or to LCT to all active disease sites. The primary end point was PFS; secondary end points were OS, toxicity, and the appearance of new lesions. All analyses were two sided, and P values less than .10 were deemed significant. RESULTS The Data Safety and Monitoring Board recommended early trial closure after 49 patients were randomly assigned because of a significant PFS benefit in the LCT arm. With an updated median follow-up time of 38.8 months (range, 28.3 to 61.4 months), the PFS benefit was durable (median, 14.2 months [95% CI, 7.4 to 23.1 months] with LCT v 4.4 months [95% CI, 2.2 to 8.3 months] with MT/O; P = .022). We also found an OS benefit in the LCT arm (median, 41.2 months [95% CI, 18.9 months to not reached] with LCT v 17.0 months [95% CI, 10.1 to 39.8 months] with MT/O; P = .017). No additional grade 3 or greater toxicities were observed. Survival after progression was longer in the LCT group (37.6 months with LCT v 9.4 months with MT/O; P = .034). Of the 20 patients who experienced progression in the MT/O arm, nine received LCT to all lesions after progression, and the median OS was 17 months (95% CI, 7.8 months to not reached). CONCLUSION In patients with oligometastatic NSCLC that did not progress after front-line systemic therapy, LCT prolonged PFS and OS relative to MT/O.
Immunosuppression of tumor-infiltrating lymphocytes (TIL) is a common feature of advanced cancer, but its biological basis has remained obscure. We demonstrate here a molecular link between epithelial-to-mesenchymal transition (EMT) and CD8+ TIL immunosuppression, two key drivers of cancer progression. We show that microRNA-200 (miR-200), a cell-autonomous suppressor of EMT and metastasis, targets PD-L1. Moreover, ZEB1, an EMT activator and transcriptional repressor of miR-200, relieves miR-200 repression of PD-L1 on tumor cells, leading to CD8+ T cell immunosuppression and metastasis. These findings are supported by robust correlations between the EMT score, miR-200 levels and PD-L1 expression in multiple human lung cancer datasets. In addition to revealing a link between EMT and T cell dysfunction, these findings also show that ZEB1 promotes metastasis through a heretofore unappreciated cell non-autonomous mechanism, and suggest that subgroups of patients in whom malignant progression is driven by EMT activators may respond to treatment with PD-L1 antagonists.
Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in threedimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-b or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues. Lung cancer is the leading cause of cancer-related death in Western countries, and metastasis is the most common cause of death in patients with lung cancer. Approximately two-thirds of patients are diagnosed at an advanced stage, and of the remaining patients who undergo surgery, 30%-50% develop recurrence with metastatic disease. The lack of curative treatment options emphasizes the need for a better understanding of the biologic processes that drive metastasis. Toward that goal, genetic mouse models have been generated that develop lung adenocarcinoma, the most common histologic subtype of lung cancer, with differing propensities to invade and metastasize (Liu et al.
Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) signifi cantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infi ltration in multiple immunocompetent SCLC in vivo models. CD8 + T-cell depletion reversed the antitumor effect, demonstrating the role of CD8 + T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of cGAS and STING successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results defi ne previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results defi ne previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment effi cacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.