Colloids such as surfactant micelles can act as transport facilitators for highly lipophilic, generally immobile contaminants in soil. Following a fire at a pesticide facility, this study investigated vertical and lateral migration of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in heterogeneous soil beneath bunded ponds, where contaminated wastewater containing high surfactant loads was stored until remediation. Initially, surface and subsurface soil was obtained during excavation, and subsequently intact cores to 5.7 m were collected. ΣPCDD/F concentrations were elevated in the wastewater (15-81 ng/L) and correspondingly in pond surface soils (6.1-61 ng/g). Maximum ΣPCDD/F concentrations were, however, observed at 2-2.5 m depth (68-130 ng/g), far below their expected mobility range based on physicochemical properties. Congener specific analysis further indicated that PCDD/F mobility was reversed, with the least water-soluble congener migrating to the greatest extent. The presence of higher chlorinated PCDD/Fs throughout a core collected in the direction of groundwater flow indicated subsequent lateral transport. These results provide field evidence for rapid vertical migration (2.4 m in <4 months) of highly lipophilic PCDD/Fs and suggest surfactant facilitated transport as the dominant transport mechanism. Quantification and evaluation of such fundamental changes in contaminant transport and fate in the presence of surfactants is required to identify areas at risk of groundwater contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.