No abstract
CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
No abstract
Abstract. The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. The OSG project[1] is funded by the National Science Foundation and the Department of Energy Scientific Discovery through Advanced Computing program. The OSG project provides specific activities for the operation and evolution of the common infrastructure. The US ATLAS and US CMS collaborations contribute to and depend on OSG as the US infrastructure contributing to the World Wide LHC Computing Grid on which the LHC experiments distribute and analyze their data. Other stakeholders include the STAR RHIC experiment, the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Dark Energy Survey (DES) and several Fermilab Tevatron experiments-CDF, D0, MiniBoone etc. The OSG implementation architecture brings a pragmatic approach to enabling vertically integrated community specific distributed systems over a common horizontal set of shared resources and services. More information can be found at the OSG web site: www.opensciencegrid.org.
Storage management is one of the most important enabling technologies for large-scale scientific investigations.Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks in managing, replicating, and accessing files in distributed environments. Storage Resource Managers (SRMs), named after their web services control protocol, provide the technology needed to manage the rapidly growing distributed data volumes, as a result of faster and larger computational facilities. SRMs are Grid storage services providing interfaces to storage resources, as well as advanced functionality such as dynamic space allocation and file management on shared storage systems. They call on transport services to bring files into their space transparently and provide effective sharing of files. SRMs are based on a common specification that emerged over time and evolved into an international collaboration. This approach of an open specification that can be used by various institutions to adapt to their own storage systems has proven to be a remarkable success -the challenge has been to provide a consistent homogeneous interface to the Grid, while allowing sites to have diverse infrastructures.In particular, supporting optional features while preserving interoperability is one of the main challenges we describe in this paper. We also describe using SRM in a large international High Energy Physics collaboration, called WLCG, to prepare to handle the large volume of data expected when the Large Hadron Collider (LHC) goes online at CERN. This intense collaboration led to refinements and additional functionality in the SRM specification, and the development of multiple interoperating implementations of SRM for various complex multicomponent storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.