A comprehensive marine biomarker record of green and purple sulfur bacteria (GSB and PSB, respectively) is required to test whether anoxygenic photosynthesis represented a greater fraction of marine primary productivity during the Precambrian than the Phanerozoic, as current models of ocean redox evolution suggest. For this purpose, we analyzed marine rock extracts and oils from the Proterozoic to the Paleogene for C40 diagenetic products of carotenoid pigments using new analytical methods. Gas chromatography coupled with tandem mass spectrometry provides a new perspective on the temporal distributions of carotenoid biomarkers for phototrophic sulfur bacteria, specifically okenane, chlorobactane, and paleorenieratane. According to conventional paleoredox interpretations, this revised stratigraphic distribution of the GSB and PSB biomarkers implies that the shallow sunlit surface ocean (<24 m) became sulfidic more frequently in the geologic past than was previously thought. We reexamine whether there is evidence supporting a planktonic source of GSB and PSB pigments in marine systems or whether additional factors are required to explain the marine phototrophic sulfur bacteria record. To date, planktonic GSB and PSB and their pigments have been identified in restricted basins and lakes, but they have yet to be detected in the unrestricted, transiently sulfidic, marine systems. Based on modern observations, additional environmental factors, including basin restriction, microbial mats, or sediment transport, may be required to fully explain GSB and PSB carotenoids in the geologic record.
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780-729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid-Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen-bound regular steranes from Tonian rocks, including 21-norcholestane, 27-norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C 30 sterane series from our least thermally mature Chuar Group samples.Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen-bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic-rich rock samples generally yield higher S/H ratios than for organic-lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C 27 sterane (cholestane) predominance among total C 26 -C 30 steranes is a common feature found for all samples investigated, with lower amounts of C 28 steranes (ergostane and crysotane) also present. No traces of known ancient C 30 sterane compounds; including 24-isopropylcholestanes, 24-n-propylcholestanes, or 26-methylstigmastanes, are detectable in any of these pre-Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation. K E Y W O R D S eukaryotes, HyPy, lipid biomarkers, Neoproterozoic, steranes | 327 ZUMBERGE Et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.