The citric acid cycle is central to the regulation of energy homeostasis and cell metabolism 1 . Mutations in enzymes that catalyse steps in the citric acid cycle result in human diseases with various clinical presentations 2 . The intermediates of the citric acid cycle are present at micromolar concentration in blood and are regulated by respiration, metabolism and renal reabsorption/ extrusion. Here we show that GPR91 (ref.3), a previously orphan G-protein-coupled receptor (GPCR), functions as a receptor for the citric acid cycle intermediate succinate. We also report that GPR99 (ref. 4), a close relative of GPR91, responds to a-ketoglutarate, another intermediate in the citric acid cycle. Thus by acting as ligands for GPCRs, succinate and a-ketoglutarate are found to have unexpected signalling functions beyond their traditional roles. Furthermore, we show that succinate increases blood pressure in animals. The succinate-induced hypertensive effect involves the renin-angiotensin system and is abolished in GPR91-deficient mice. Our results indicate a possible role for GPR91 in renovascular hypertension, a disease closely linked to atherosclerosis, diabetes and renal failure 5,6 .In a search for natural ligands for orphan GPCRs, we tested extracts from various animal tissues for their ability to evoke an increase in intracellular Ca 2þ concentration ([Ca 2þ ] i ) using the aequorin assay 7 . We found that fractions from pig kidney extracts specifically activated cells expressing GPR91 (Fig. 1a). GPR91 is an orphan GPCR highly expressed in the kidney and shares 33% amino acid identity with GPR99/GPR80 (refs 4, 8). On the basis of their homology with the purinergic receptor P2Y1, nucleotide ligands were predicted for GPR91 and GPR99 (ref. 4). However, the GPR91 ligand activity in pig kidney extracts was resistant to various stringent treatments including alkaline phosphatase, peptidase, and hydrolysis in 6 M HCl at 100 8C. Accordingly, the supposition that GPR91 might be activated by a nucleotide or peptide ligand was unlikely. We purified the natural ligand for GPR91 by ion-exchange, size-exclusion and reversed-phase fast performance liquid chromatography/high-performance liquid chromatography (Fig. 1a).A major molecular ion [M þ H] þ at m/z 119.2 was observed by mass spectrometry (Fig. 1b). 1 H NMR analysis revealed a single type of proton in the highly purified GPR91 ligand (Fig. 1c). 13 C NMR analysis further suggested the presence of -CH 2 -(methylene) and ¼C¼O (carbonyl) groups (Fig. 1d). Combined with mass spectrometry results and the biochemical properties of the ligand, the purified GPR91 ligand was predicted and confirmed to be succinic acid (Fig. 1c, d).Commercially obtained succinate (the physiological form of succinic acid) increased [Ca 2þ ] i dose-dependently in the aequorin assay (Fig. 2a). Succinate also activated mouse and rat orthologues of GPR91 (Fig. 2a). The succinate-induced increase in [Ca 2þ ] i was further confirmed with a fluorimetric imaging plate reader (FLIPR) system in the 293-hGP...
Docosahexaenoic acid [22:6w3;7,10,13,16,19)] is the major polyunsaturated fatty acid in the photoreceptor membranes of the retina and in cerebral gray matter. It must be obtained either from the diet or by synthesis from other w3 fatty acids, chiefly a-linolenic acid (18:3w3). We tested the effect of dietary w3 fatty acid deprivation during gestation and postnatal development upon the fatty acid composition of the retina and cerebral cortex and upon visual function. Rhesus monkeys (Macaca mulatta) were fed semipurifled diets very low in 18:3w3 throughout pregnancy, and their infants received a similar diet from birth. A control group of females and their infants received a semipurified diet supplying ample 18:3cw.3. In near-term fetuses and newborn infants of the deficient group, the 22:6w3 content of phosphatidylethanolamine was one-half of control values in the retina and one-fourth in cerebral cortex. By 22 months of age, the content of 22:6w3 in these tissues approximately doubled in control monkeys, but it failed to increase in the deficient group. Low levels of 22:6w3 in the deficient animals' tissues were accompanied by a compensatory increase in longer-chain w6 fatty acids, particularly 22:5w6. Functionally, the deficient animals had subnormal visual acuity at 4-12 weeks of age and prolonged recovery time of the dark-adapted electroretinogram after a saturating flash. Abnormally low levels of 22:6&3 may produce alterations in the biophysical properties of photoreceptor and neural membranes that may underlie these functional impairments. The results of this study suggest that dietary w3 fatty acids are essential for normal prenatal and postnatal development of the retina and brain.Neither linoleic acid (18:2w6)t nor a-linolenic acid (18:3w3)
The Smith-Lemli-Opitz syndrome (SLOS; also known as "RSH syndrome" [MIM 270400]) is an autosomal recessive multiple malformation syndrome due to a defect in cholesterol biosynthesis. Children with SLOS have elevated serum 7-dehydrocholesterol (7-DHC) levels and typically have low serum cholesterol levels. On the basis of this biochemical abnormality, it has been proposed that mutations in the human sterol Delta7-reductase (7-DHC reductase; E.C.1.3.1.21) gene cause SLOS. However, one could also propose a defect in a gene that encodes a protein necessary for either the expression or normal function of sterol Delta7-reductase. We cloned cDNA encoding a human sterol Delta7-reductase (DHCR7) on the basis of its homology with the sterol Delta7-reductase from Arabidopsis thaliana, and we confirmed the enzymatic function of the human gene product by expression in SLOS fibroblasts. SLOS fibroblasts transfected with human sterol Delta7-reductase cDNA showed a significant reduction in 7-DHC levels, compared with those in SLOS fibroblasts transfected with the vector alone. Using radiation-hybrid mapping, we show that the DHCR7 gene is encoded at chromosome 11q12-13. To establish that defects in this gene cause SLOS, we sequenced cDNA clones from SLOS patients. In three unrelated patients we have identified four different mutant alleles. Our results demonstrate both that the cDNA that we have identified encodes the human sterol Delta7-reductase and that mutations in DHCR7 are responsible for at least some cases of SLOS.
Long-chain fatty acids amplify insulin secretion from the pancreatic beta cell. The G protein-coupled receptor GPR40 is specifically expressed in beta cells and is activated by fatty acids. Loss of function of GPR40 was shown to markedly inhibit fatty-acid stimulation of insulin secretion in vitro. However, the role of GPR40 in acute regulation of insulin secretion in vivo remains unclear. To this aim, we generated GPR40 knock-out (KO) mice and examined glucose homeostasis, insulin secretion in response to glucose and Intralipid in vivo, and insulin secretion in vitro after short-and long-term exposure to fatty acids. Our results show that GPR40 KO mice have essentially normal glucose tolerance and insulin secretion in response to glucose. Insulin secretion in response to Intralipid was reduced by approximately 50%. In isolated islets, insulin secretion in response to glucose and other secretagogues was unaltered, but fatty-acid potentiation of insulin release was markedly reduced. Islets from GPR40 KO mice were as sensitive to fatty-acid inhibition of insulin secretion upon prolonged exposure as islets from wild-type animals. We conclude that GPR40 contributes approximately half of the full insulin secretory response to fatty acids in mice, but does not play a role in the mechanisms of lipotoxicity.Long-chain fatty acids are essential regulators of normal pancreatic beta-cell function, and are likely to play a role in the pathogenesis of beta-cell dysfunction in type 2 diabetes (reviewed in (1)). Under normal circumstances, fatty acids do not initiate insulin release, but amplify glucose-stimulated insulin secretion (GSIS) (2-5). Fatty-acid potentiation of insulin secretion has physiological implications, particularly after a period of fasting (6). Until recently, the prevailing model postulated that the effects of fatty acids on the beta cell were mediated by their intracellular metabolism and the generation of lipid derived signals which, in turn, potentiate GSIS (2;7). According to this hypothesis, fatty acids are transported across the plasma membrane and activated into their long-chain coenzyme A esters, which in turn modulate a number of intracellular targets that influence insulin secretion. Moreover, evidence suggests that intracellular fatty-acid metabolism is a key component of both nutrient-and nonnutrient-induced insulin secretion (7). In contrast to their acute, stimulatory effect on GSIS, prolonged exposure to elevated levels of fatty acids impairs beta-cell function, a phenomenon referred to as lipotoxicity (reviewed in (1)). The mechanisms of lipotoxicity remain poorly understood but have been proposed to also involve intracellular metabolism of fatty acids and the generation of lipid-derived metabolites (8).The models described above have been challenged by the observation that fatty acids activate the G-protein coupled receptor (GPCR) GPR40 (9-11), also referred to as the free fatty-acid 1 receptor (FFA 1 R) (12;13). GPR40 belongs to a class of GPCR with high structural conservation, o...
Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium-and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.