With the rise of neural network-based classifiers, it is evident that these algorithms are here to stay. Even though various algorithms have been developed, these classifiers still remain vulnerable to misclassification attacks. This article outlines a new noise layer attack based on adversarial learning and compares the proposed method to other such attacking methodologies like Fast Gradient Sign Method, Jacobian-Based Saliency Map Algorithm and DeepFool. This work deals with comparing these algorithms for the use case of single image classification and provides a detailed analysis of how each algorithm compares to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.