Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10–20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g. ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.
To further improve the speed and miniaturization of a complete Western blot, a microscale immunoassay with direct deposition of immunoassay reagents has been developed with the flow deposition of antibodies.
Pioneer Hi-Bred is developing a low-cost method for rapid screening of DNA, for use in research on elite crop seed genetics. Unamplified genomic DNA with the requisite base sequence is simultaneously labeled by two different colored fluorescent probes, which hybridize near the selected gene. Dual-channel single molecule detection (SMD) within a flow cell then provides a sensitive and specific assay for the gene. The technique has been demonstrated using frequency-doubled Nd:YAG laser excitation of two visible-wavelength dyes. A prototype instrument employing infrared fluorophores and laser diodes for excitation has been developed. Here, we report results from a Monte Carlo simulation of the new instrument, in which experimentally determined photophysical parameters for candidate infrared dyes are used for parametric studies of experimental operating conditions. Our findings demonstrate the feasibility of the approach for selected fluorophores, and identify suitable operating conditions. Fluorophore photostability is found to be a key factor in determining the instrument sensitivity. Most infrared dyes have poor photostability, resulting in inefficient SMD. However, the normalized cross-correlation function of the photon signals from each of the two channels can still yield a discernable peak, provided that the concentration of dual-labeled molecules is sufficiently high. Further, for low concentrations, processing of the two photon streams with Gaussian weighted sliding sum digital filters and selection of simultaneously occuring peaks can also provide a sensitive indicator of the presence of dual-labeled molecules, although accidental coincidences must be considered in the interpretation of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.