We have conducted a genome screen of autism, by linkage analysis in an initial set of 90 multiplex sibships, with parents, containing 97 independent affected sib pairs (ASPs), with follow-up in 49 additional multiplex sibships, containing 50 ASPs. In total, 519 markers were genotyped, including 362 for the initial screen, and an additional 157 were genotyped in the follow-up. As a control, we also included in the analysis unaffected sibs, which provided 51 discordant sib pairs (DSPs) for the initial screen and 29 for the follow-up. In the initial phase of the work, we observed increased identity by descent (IBD) in the ASPs (sharing of 51.6%) compared with the DSPs (sharing of 50.8%). The excess sharing in the ASPs could not be attributed to the effect of a small number of loci but, rather, was due to the modest increase in the entire distribution of IBD. These results are most compatible with a model specifying a large number of loci (perhaps >/=15) and are less compatible with models specifying =10 loci. The largest LOD score obtained in the initial scan was for a marker on chromosome 1p; this region also showed positive sharing in the replication family set, giving a maximum multipoint LOD score of 2.15 for both sets combined. Thus, there may exist a gene of moderate effect in this region. We had only modestly positive or negative linkage evidence in candidate regions identified in other studies. Our results suggest that positional cloning of susceptibility loci by linkage analysis may be a formidable task and that other approaches may be necessary.
The rat phenylethanolamine N-methyltransferase (PNMT) gene contains overlapping consensus elements for the Sp1 and Egr-1 transcription factors located at -45 bp and -165 bp in the PNMT promoter. In the present study, we show that Sp1 and Egr-1 can specifically bind to these overlapping elements, that this binding appears to be mutually exclusive, and that binding site occupancy is dependent upon the concentration of each factor and its binding affinity for each site. Egr-1 binds to the -165 bp site with relatively high affinity (IC50 = 14 nM) and to the -45 bp site with relatively low affinity (IC50 = 1360 nM), whereas Sp1 binds to both sites with intermediate affinities (IC50 = 210 and 140 nM, respectively). Consistent with the DNA-binding data, Egr-1 stimulates PNMT promoter activity primarily through interaction with the -165 bp site, while Sp1 stimulates PNMT promoter activity by interacting with both the -45 bp and the -165 bp sites. These results show that Sp1 and Egr-1 are capable of differentially activating PNMT gene expression, thereby suggesting that different stimuli may control the activity of the PNMT gene by selectively regulating Sp1 and/or Egr-1.
Physical challenges, emotional arousal, increased physical activity, or changes in the environment can evoke stress, requiring altered activity of visceral organs, glands, and smooth muscles. These alterations are necessary for the organism to function appropriately under these abnormal conditions and to restore homeostasis. These changes in activity comprise the "fight-or-flight" response and must occur rapidly or the organism may not survive. The rapid responses are mediated primarily via the catecholamines, epinephrine, and norepinephrine, secreted from the adrenal medulla. The catecholamine neurohormones interact with adrenergic receptors present on cell membranes of all visceral organs and smooth muscles, leading to activation of signaling pathways and consequent alterations in organ function and smooth muscle tone. During the "fight-or-flight response," the rise in circulating epinephrine and norepinephrine from the adrenal medulla and norepinephrine secreted from sympathetic nerve terminals cause increased blood pressure and cardiac output, relaxation of bronchial, intestinal and many other smooth muscles, mydriasis, and metabolic changes that increase levels of blood glucose and free fatty acids. Circulating catecholamines can also alter memory via effects on afferent sensory nerves impacting central nervous system function. While these rapid responses may be necessary for survival, sustained elevation of circulating catecholamines for prolonged periods of time can also produce pathological conditions, such as cardiac hypertrophy and heart failure, hypertension, and posttraumatic stress disorder. In this review, we discuss the present knowledge of the effects of circulating catecholamines on peripheral organs and tissues, as well as on memory in the brain.
This review summarizes knowledge on the effects of stress on two catecholamine biosynthetic enzymes, tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT). Information is presented on differential responses of the enzymes to a variety of stressors as well as differential responses of the enzymes localized to the central nervous system vs. peripheral nervous system and tissues. Changes in mRNA and protein or activity are described, including species- and stressor-specific effects. While temporal changes in these parameters may differ for the particular stressor or enzyme, in general, maximal changes in mRNA and protein content occur at 6-8 and 24 h after stressor exposure, respectively. Elevation of TH and PNMT transcriptional activators prior to mRNA induction and nuclear run-on assays show that stress activates the genes encoding these enzymes. Yet, extents of induction of mRNA, protein and enzyme activity are often discordant depending on the stress, its duration and repetition of exposure. The extremes are concordant changes in mRNA and protein/activity vs. highly elevated mRNA with no change in protein/activity. Post-transcriptional and/or post-translational regulatory influences that may contribute to the complex effects of stress on TH, PNMT and the stress hormone epinephrine are explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.