Reactive blends of bisphenol A dicyanate (BACY) and a novolac epoxy resin (EPN) were investigated for their cure behavior and the mechanical, thermal, and physical properties of the cocured neat resin and glass-laminate composites. Contrary to the apparent observation in DSC, the dynamic mechanical analysis confirmed a multistep cure reaction of the blend, in league with an established reaction path for similar systems. The cured matrix was found to contain both polycyanurate and oxazolidinone networks that existed in discrete phases exhibiting independent glass transitions in dynamic mechanical analysis (DMA). The flexible and less crosslinked oxazolidinone network contributed to enhanced flexural strength at the cost of the tensile strength of the neat resin. The increased resin flexibility was, however, not translated to the glass-laminate composite for which the flexural strength decreased with the oxazolidinone content, although the latter was conducive for rendering a stronger interphase. The presence of oxazolidinone adversely affected the thermal stability of the cured resin and the high-temperature performance of both neat resin and the composites.
In this study, we investigated the functional form of the size-defect relationship for software modules through replicated studies conducted on ten opensource products. We consistently observed a power-law relationship where defect proneness increases at a slower rate compared to size. Therefore, smaller modules are proportionally more defect prone. We externally validated the application of our results for two commercial systems. Given limited and fixed resources for code inspections, there would be an impressive improvement in the cost-effectiveness, as much as 341% in one of the systems, if a smallest-first strategy were preferred over a largest-first one. The consistent results obtained in this study led us to state a theory of relative defect proneness (RDP): In large-scale software systems, smaller modules 474 Empir Software Eng (2008) 13:473-498 will be proportionally more defect-prone compared to larger ones. We suggest that practitioners consider our results and give higher priority to smaller modules in their focused quality assurance efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.