MYD88 L265P is a commonly recurring mutation in patients with Waldenström's macroglobulinemia that can be useful in differentiating Waldenström's macroglobulinemia and non-IgM LPL from B-cell disorders that have some of the same features. (Funded by the Peter and Helen Bing Foundation and others.).
The N-methyl-D-aspartate (NMDA) receptor family regulates various central nervous system functions, such as synaptic plasticity. However, hypo-or hyperactivation of NMDA receptors is critically involved in many neurological and psychiatric conditions, such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Consequently, subtype-selective positive and negative modulators of NMDA receptor function have many potential therapeutic applications not addressed by currently available compounds. We have identified allosteric modulators with several novel patterns of NMDA receptor subtype selectivity that have a novel mechanism of action. In a series of carboxylated naphthalene and phenanthrene derivatives, compounds were identified that selectively potentiate responses at GluN1/GluN2A [e.g., 9-iodophenanthrene-3-carboxylic acid (UBP512)]; GluN1/GluN2A and GluN1/GluN2B [9-cyclopropylphenanthrene-3-carboxylic acid (UBP710)]; GluN1/GluN2D [3,5-dihydroxynaphthalene-2-carboxylic acid (UBP551)]; or GluN1/GluN2C and GluN1/GluN2D receptors [6-, 7-, 8-, and 9-nitro isomers of naphth[1,2-c][1,2,5]oxadiazole-5-sulfonic acid (NSC339614)] and have no effect or inhibit responses at the other NMDA receptors. Selective inhibition was also observed; UBP512 inhibits only GluN1/GluN2C and GluN1/GluN2D receptors, whereas 6-bromo-2-oxo-2H-chromene-3-carboxylic acid (UBP608) inhibits GluN1/ GluN2A receptors with a 23-fold selectivity compared with GluN1/ GluN2D receptors. The actions of these compounds were not competitive with the agonists L-glutamate or glycine and were not voltage-dependent. Whereas the N-terminal regulatory domain was not necessary for activity of either potentiators or inhibitors, segment 2 of the agonist ligand-binding domain was important for potentiating activity, whereas subtype-specific inhibitory activity was dependent upon segment 1. In terms of chemical structure, activity profile, and mechanism of action, these modulators represent a new class of pharmacological agents for the study of NMDA receptor subtype function and provide novel lead compounds for a variety of neurological disorders.
piperazine-2,3-dicarboxylic acid (PBPD) is a moderate affinity, competitive N-methyl-D-aspartate (NMDA) receptor antagonist with an atypical pattern of selectivity among NMDA receptor 2 subunit (NR2) subunits. We now describe the activity of several derivatives of PBPD tested at both rat brain NMDA receptors using L-[ 3 H]-glutamate binding assays and at recombinant receptors expressed in Xenopus oocytes. 2 Substituting various branched ring structures for the biphenyl group of PBPD reduced NMDA receptor activity. However, substituting linearly arranged ring structures -fluorenone or phenanthrene groups -retained or enhanced activity. 3 Relative to PBPD, the phenanthrene derivative (2S*,3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) displayed a 30-to 78-fold increase in affinity for native NMDA receptors. At recombinant receptors, PPDA displayed a 16-fold (NR2B) to 94-fold (NR2C) increase in affinity over PBPD. 4 Replacement of the biphenyl group of PBPD with a 9-oxofluorene ring system resulted in small changes in receptor affinity and subtype selectivity. 5 2 0 -Bromo substitution on the biphenyl group of PBPD reduced antagonist affinity 3-to 5-fold at NR2A-, NR2B-and NR2D-containing receptors, but had little effect on NR2C-containing receptors. In contrast, 4 0 -fluoro substitution of the biphenyl ring of PBPD selectively increased NR2A affinity. 6 The aromatic rings of PBPD and PPDA increase antagonist affinity and appear to interact with a region of the NMDA receptor displaying subunit heterogeneity. PPDA is the most potent and selective NR2C/NR2D-preferring antagonist yet reported and thus may be useful in defining NR2C/ NR2D function and developing related antagonists with improved NMDA receptor subtype selectivity.
Long-term potentiation (LTP) and long-term depression (LTD) are persistent modifications of synaptic strength that have been implicated in learning, memory, and neuronal development. Despite their opposing effects, both forms of plasticity can be triggered by the activation of NMDA receptors. One mechanism proposed for this bidirectional response is that the specific patterns of afferent stimulation producing LTP and LTD activate to different degrees a uniform receptor population. A second possibility is that these patterns activate separate receptor subpopulations composed of different NMDA receptor (NR) subunits. To test this hypothesis we examined the inhibition of LTP and LTD by a series of competitive NMDA receptor antagonists that varied in their affinities for NR2A/B and NR2C/D subunits. The potency for the inhibition of LTP compared with inhibition of LTD varied widely among the agents. Antagonists with higher affinity for NR2A/B subunits relative to NRC/D subunits showed more potent inhibition of LTP than of LTD. D-3-(2-carboxypiperazine-4-yl)-1-propenyl-1-phosphonic acid, which binds to NR2A/B with very high affinity relative to NR2C/D, showed an approximately 1000-fold higher potency for LTP than for LTD. These results show that distinct subpopulations of NMDA receptors characterized by different NR2 subunits contribute to the induction mechanisms of potentiation and depression.
The resolved X-ray crystal structures of the glutamate-binding domain (S1/S2 domains) of the GluR2 and NR1 glutamate receptor subunits were used to model the homologous regions of the N-methyl-D-aspartate (NMDA) receptor's NR2 subunits. To test the predictive value of these models, all four stereoisomers of the antagonist 1-(phenanthren-2-carbonyl) piperazine-2,3-dicarboxylic acid (PPDA) were docked into the NR2B glutamate-binding site model. This analysis suggested an affinity order for the PPDA isomers of D-cis Ͼ L-cis Ͼ L-trans ϭ D-trans and predicted that the 2-position carboxylate group of the cis-PPDA isomers, but not of the trans-PPDA isomers, may be interacting with histidine 486 in NR2B. Consistent with these predictions, cis-PPDA displays a 35-fold higher affinity for NR2B-containing NMDA receptors than trans-PPDA. In addition, mutating NR2B's H486 to phenylalanine decreased cis-PPDA affinity 8-fold but had no effect on trans-PPDA affinity. In contrast, the NR2B H486F mutation increased the affinity of the typical antagonists CGS-19755 [(2R*,4S*)-4-phosphonomethyl-2-piperidine carboxylic acid] and 4-(3-phosphonopropyl) piperidine-2-carboxylic acid. In the NR1-based NR2 models, there were only four subunit-specific amino acid residues exposed to the ligand-binding pocket (and six in the GluR2-based models). These residues are located at the edge of the binding pocket, suggesting that large antagonists may be necessary for subtype specificity. Of these residues, mutational analysis and modeling suggest that A414, R712, and G713 (NR2B numbering) may be especially useful for developing NR2C-and NR2D-selective NMDA receptor antagonists and that residues A414 and T428 may determine subunit variations in agonist affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.