361new epithelium.The significance of glycogen deposition in squamous metaplasia of the uterus following vit. A deficiency and the biochemical enzyme systems involved is not known a t the present time. There is evidence that the most important single factor which determines the rate of mitosis in tissue, such as mammalian epidermis, is the energy supply within the cells which depends upon the intracellular availability of glucose derivatives( 5 ) . If it can be assumed that because of increased mitotic activity the energy requirements of rnetaplastic epithelial cells is greater than for normal uterine epithelial cells, then the glycogen present in the metaplastic cells may be a source of readily utilizable energy.The present results on glycogen deposition in epithelial metaplasia differs from the observation made in the human( 6). In one instance a single squamous metaplastic cervical gland of one patient was reported to be free of glycogen. Since there appears to be a difference in glycogen deposition in squamous metaplasia, investigations are under way to determine whether the deposition of glycogen in stratified squamous metaplasia is peculiar to the changes following vit. A deficiency or whether the deposition of glycogen occurs in all epithelial metaplasia.Summary. In the epithelial metaplasia of the rat uterus that occurred following vit. A deficiency, glycogen was observed in the stratified epithelium. An earlier report showed that the normal uterine epithelium of the rat uterus contains no glycogen.
The cis/trans isomerization of the peptide bond preceding proline residues in proteins can limit the rate at which a protein folds to its native conformation. Mutagenic analyses of dihydrofolate reductase (DHFR) from Escherichia coli show that this isomerization reaction can be intramolecularly catalyzed by a side chain from an amino acid which is distant in sequence but adjacent in the native conformation. The guanidinium NH2 nitrogen of Arg 44 forms one hydrogen bond to the imide nitrogen and a second to the carbonyl oxygen of Pro 66 in wild-type DHFR. Replacement of Arg 44 with Leu results in a change of the nature of the two slow steps in refolding from being limited by the acquisition of secondary and/or tertiary structure to being limited by isomerization. The simultaneous replacement of Pro 66 with Ala (i.e., the Leu 44/Ala 66 double mutant) eliminates this isomerization reaction and once again makes protein folding the limiting process. Apparently, one or both of the hydrogen bonds between Arg 44 and Pro 66 accelerate the isomerization of the Gln 65-Pro 66 peptide bond. The replacement of Arg 44 with Leu affects the kinetics of the slow folding reactions in a fashion which indicates that the crucial hydrogen bonds form in the transition states for the rate-limiting steps in folding.
The effect of pH on the conformational stability of insulin was studied. Surprisingly, the Gibbs free energy of unfolding increased approximately 30% by acidification. pH titration of insulin's conformational stability is described by a transition involving a single proton with an apparent pK(a) of 7.0. The acid stabilization of insulin's conformation was attributed to the protonation of histidine at position 5 on the B-chain (HB5) as determined by 1H-NMR of the histidines, selective amino acid alteration, and enthalpies of ionization. Further acidification (at least to pH 2) does not decrease the free energy of unfolding. A conformational change in the tertiary structure, as indicated by the near-UV circular dichroism spectrum, accompanies this change in stability. We propose that this acid stabilization of insulin is physiologically important in maintaining insulin stability in the acid environment of the secretory/storage granules of the beta-cell of the pancreatic islets of Langerhans.
We report the results of a stopped-flow kinetic evaluation of the folding of human growth hormone (hGH). The results are compared with those obtained for a disulfide-modified analog in which the four cysteine residues have been reduced and alkylated to form tetra-S-carbamidomethylated hGH in order to elucidate the role of disulfide bonds in the folding reaction. Multiple detection techniques were applied to monitor both refolding and unfolding processes initiated by guanidine hydrochloride concentration jumps. Using far-UV circular dichroism (CD) detection to monitor folding of hGH, we find that 70% of the secondary structure forms in a burst phase occurring within the stopped-flow dead time. Two slower phases were identified in the observable portion of the CD signal. Multiple kinetic phases were resolved when folding was monitored by intrinsic tryptophan fluorescence or near-UV absorbance as probes of tertiary structure, and the number of time constants required to fit the data depended on the hGH concentration and nature of the denaturant jump. The associated amplitudes also displayed strong dependence on the final denaturant concentration. Results obtained from the tetra-S-carbamidomethylated hGH studies demonstrate that the folding reactions of hGH are remarkably similar in the presence and absence of the disulfide bonds. Disulfide bond reduction in hGH is proposed to affect folding primarily by increasing the population of self-associated intermediate states in the folding pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.