Natural Killer (NK) cells are innate immune responders critical for viral clearance and immunomodulation. Despite their vital role in viral infection, the contribution of NK cells in fighting SARS-CoV-2 has not yet been directly investigated. Insights into pathophysiology and therapeutic opportunities can therefore be inferred from studies assessing NK cell phenotype and function during SARS, MERS, and COVID-19. These studies suggest a reduction in circulating NK cell numbers and/or an exhausted phenotype following infection and hint toward the dampening of NK cell responses by coronaviruses. Reduced circulating NK cell levels and exhaustion may be directly responsible for the progression and severity of COVID-19. Conversely, in light of data linking inflammation with coronavirus disease severity, it is necessary to examine NK cell potential in mediating immunopathology. A common feature of coronavirus infections is that significant morbidity and mortality is associated with lung injury and acute respiratory distress syndrome resulting from an exaggerated immune response, of which NK cells are an important component. In this review, we summarize the current understanding of how NK cells respond in both early and late coronavirus infections, and the implication for ongoing COVID-19 clinical trials. Using this immunological lens, we outline recommendations for therapeutic strategies against COVID-19 in clearing the virus while preventing the harm of immunopathological responses.
Tumors are complex ecosystems composed of networks of interacting 'normal' and malignant cells. It is well recognized that cytokine-mediated cross-talk between normal stromal cells, including cancer-associated fibroblasts (CAFs), vascular endothelial cells, immune cells, and cancer cells, influences all aspects of tumor biology. Here we demonstrate that the cross-talk between CAFs and cancer cells leads to enhanced growth of oncolytic virus (OV)-based therapeutics. Transforming growth factor-β (TGF-β) produced by tumor cells reprogrammed CAFs, dampened their steady-state level of antiviral transcripts and rendered them sensitive to virus infection. In turn, CAFs produced high levels of fibroblast growth factor 2 (FGF2), initiating a signaling cascade in cancer cells that reduced retinoic acid-inducible gene I (RIG-I) expression and impeded the ability of malignant cells to detect and respond to virus. In xenografts derived from individuals with pancreatic cancer, the expression of FGF2 correlated with the susceptibility of the cancer cells to OV infection, and local application of FGF2 to resistant tumor samples sensitized them to virotherapy both in vitro and in vivo. An OV engineered to express FGF2 was safe in tumor-bearing mice, showed improved therapeutic efficacy compared to parental virus and merits consideration for clinical testing.
preparation. SRW and YW and conceived the project, designed the experiments, analyzed and interpreted the results, and drafted and revised the manuscript.
IntroductionAutologous cancer cell vaccines are promising personalised immunotherapeutic options for solid and haematological malignancies that uses the patient’s own cells to arm an immune response. Evidence suggests that among patients receiving these vaccines, those who mount an immune response against their own tumour cells have better prognosis, and a myriad of preclinical studies have demonstrated the same. Recently, two autologous cell vaccines Vigil and OncoVAX have made it to phase III clinical trials. Here, we outline a protocol to be used for two separate systematic reviews using a parallel approach for inclusion criteria, data extraction and analysis for autologous cell vaccines in (1) solid and (2) haematological malignancies. We aim to review evidence from controlled and uncontrolled interventional studies of autologous cell vaccines administered to patients with cancer to determine their historical efficacy (with or without associated adjuvants or modifications) with clinical response rates and safety outcomes being of particular importance.Methods and analysisWe will search MEDLINE (OVID interface, including In-Process and Epub Ahead of Print), Embase (OVID interface) and the Cochrane Central Register of Controlled Trials (Wiley interface) for articles published from 1947 until 30 July 2018 (date search was performed). Studies will be screened first by title and abstract, then by full-text in duplicate. Interventional trials that report the use of an autologous cell vaccine to patients with cancer of any age will be included. The primary outcomes of interest in this review are clinical response (complete or overall/objective response) and safety outcomes (adverse events). Secondary outcomes include immune response, disease-free survival and overall survival. The risk of bias within studies will be assessed using the appropriate Cochrane Risk of Bias tool. If appropriate, a random effects meta-analysis will be performed to synthesise the data and report summary estimates of effect. Statistical heterogeneity will be assessed using the I2 statistic.Ethics and disseminationEthics approval is not required for this systematic review protocol as the review will solely use published literature. Results will be submitted to peer-reviewed journals for publication and presented to relevant stakeholders and scientific meetings.PROSPERO registration numberCRD42019140187.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.