This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Acute cyclosporine (CsA) nephrotoxicity is characterized by a reduction of glomerular filtration rate (GFR), hypomagnesemia and tubular injury. The mechanisms of CsA's immunosuppressive action and presumably its nephrotoxicity are mediated through inhibition of the renal phosphatase, calcineurin. FK506 (FK), which has a different chemical structure and binding immunophilin, also inhibits calcineurin. We compared the renal effects of these drugs to those of rapamycin (RAPA), which although similar in structure and intracellular binding to FK, does not work by changing calcineurin activity. Rats were given CsA (15 mg/kg/s.c.), FK (6 mg/kg/p.o.), RAPA (3 mg/kg/p.o.) or vehicle (V) for two weeks on a low salt diet. CsA and FK strikingly decreased urinary excretion of nitric oxide, renal blood flow and GFR, whereas RAPA did not. In contrast, all these three drugs caused significant hypomagnesemia associated with inappropriately high fractional excretion of magnesium, suggesting renal magnesium wasting. In addition, with all three drugs there were lesions in the rat kidneys consisting of tubular collapse, vacuolization and nephrocalcinosis. We thus showed that only the calcineurin inhibitors produced glomerular dysfunction in an acute experimental model of nephrotoxicity. The mechanism of hypomagnesemia and tubular injury induced by all three immunosuppressive drugs is unclear but may be independent of calcineurin. The mechanism of renal vasoconstriction on the other hand may be related to inhibition of calcineurin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.