A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of ␣-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated ␣-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of ␣-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated ␣-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.A number of neurodegenerative diseases, including Parkinson disease (PD), 4 dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) are defined histologically by the presence of Lewy bodies (LBs), intracellular protein aggregates that have a range of morphologies, from cytoplasmic spheres to neuritic threads also referred to as Lewy neurites (LNs). A number of proteins have been identified in LBs largely by immunohistochemical staining of brain, although the two most common are ubiquitin and ␣-synuclein (1-4). The invariable presence of ␣-synuclein in LBs suggests that it plays a key role in the etiology of such diseases ("synucleinopathies"). Point mutations in the synuclein gene as well as multiplication of the gene in familial cases of PD lead to autosomally dominant familial forms of PD (5-9). As in sporadic PD, LBs are also found in the brains of individuals with familial PD suggesting that clues about the pathogenic role of synuclein lie within the LB.Because ␣-synuclein is a relatively abundant neuronal protein, and LBs are found in diseased brain, we hypothesized that the formation of the abnormal LB structures results from specific modifications to this protein. We therefore analyzed the specific forms of ␣-synuclein that are found in LBs is...
Proteolytic processing of the amyloid precursor protein (APP) generates amyloid beta (Abeta) peptide, which is thought to be causal for the pathology and subsequent cognitive decline in Alzheimer's disease. Cleavage by beta-secretase at the amino terminus of the Abeta peptide sequence, between residues 671 and 672 of APP, leads to the generation and extracellular release of beta-cleaved soluble APP, and a corresponding cell-associated carboxy-terminal fragment. Cleavage of the C-terminal fragment by gamma-secretase(s) leads to the formation of Abeta. The pathogenic mutation K670M671-->N670L671 at the beta-secretase cleavage site in APP, which was discovered in a Swedish family with familial Alzheimer's disease, leads to increased beta-secretase cleavage of the mutant substrate. Here we describe a membrane-bound enzyme activity that cleaves full-length APP at the beta-secretase cleavage site, and find it to be the predominant beta-cleavage activity in human brain. We have purified this enzyme activity to homogeneity from human brain using a new substrate analogue inhibitor of the enzyme activity, and show that the purified enzyme has all the properties predicted for beta-secretase. Cloning and expression of the enzyme reveals that human brain beta-secretase is a new membrane-bound aspartic proteinase.
Amyloid-beta (Abeta) appears critical to Alzheimer's disease. To clarify possible mechanisms of Abeta action, we have quantified Abeta-induced gene expression in vitro by using Abeta-treated primary cortical neuronal cultures and in vivo by using mice transgenic for the Abeta precursor (AbetaP). Here, we report that aggregated, but not nonaggregated, Abeta increases the level of the mRNAs encoding tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). Moreover, tPA and uPA were also upregulated in aged AbetaP overexpressing mice. Because others have reported that Abeta aggregates can substitute for fibrin aggregates in activating tPA post-translationally, the result of tPA induction by Abeta would be cleavage of plasminogen to the active protease plasmin. To gain insights into the possible actions of plasmin, we evaluated the hypotheses that tPA and plasmin may mediate Abeta in vitro toxicity or, alternatively, that plasmin activation may lead to Abeta degradation. In evaluating these conflicting hypotheses, we found that purified plasmin degrades Abeta with physiologically relevant efficiency, i.e., approximately 1/10th the rate of plasmin on fibrin. Mass spectral analyses show that plasmin cleaves Abeta at multiple sites. Electron microscopy confirms indirect assays suggesting that plasmin degrades Abeta fibrils. Moreover, exogenously added plasmin blocks Abeta neurotoxicity. In summation, we interpret these results as consistent with the possibility that the plasmin pathway is induced by aggregated Abeta, which can lead to Abeta degradation and inhibition of Abeta actions.
Prochlorococcus is ubiquitous in tropical oceans, but its biogeochemical role is not well constrained. For example, cultured Prochlorococcus clones do not grow on NO3−, but these cultured clones may only represent 10–15% of the natural population variance resulting in a biased biogeochemical role. We report NO3−, NO2−, NH4+ and urea uptake rates for flow‐cytometrically sorted Sargasso Sea Prochlorococcus populations. Reduced nitrogen substrates accounted for most, 90–95%, of the measured nitrogen uptake, but these populations also directly assimilate a significant fraction of NO3−, 5–10%; a finding in stark contrast to conclusions drawn from culture studies. The observed population‐specific NO3− uptake rates compare favorably with both net Prochlorococcus population growth rates and diapycnal NO3− fluxes. We hypothesize that while reduced nitrogen supports overall high growth rates, balancing high grazing mortality, the net seasonal Prochlorococcus population growth is supported by NO3− assimilation and that Prochlorococcus contributes to new production in the oligotrophic ocean.
Magainins and mastoparans are examples of peptide antibiotics and peptide venoms, respectively. They have been grouped together as class L amphipathic helixes [Segrest, J.P., et al. (1990) Proteins 8, 103-117] because of similarities in the distribution of Lys residues along the polar face of the helix. Class L venoms lyse both eukaryotic and prokaryotic cells whereas class L antibiotics specifically lyse bacteria. The structural basis for the specificity of class L antibiotics is not well understood. Sequence analysis showed that class L antibiotics have a Glu residue on the nonpolar face of the amphipathic helix; this is absent from class L venoms. We synthesized three model class L peptides with or without Glu on the nonpolar face: 18LMG (LGSIWKFIKAFVGGIKKF), [E14]18LMG and [G5,E14]18LMG. Hemolysis, bacteriolysis, and bacteriostasis studies using these peptides showed that the specificity of lysis is due to both the presence of a Glu residue on the nonpolar face of the helix and the bulk of the nonpolar face. Studies using large unilamellar phospholipid vesicles showed that the inclusion of cholesterol greatly inhibited leakage by the two Glu-containing peptides. These results cannot be attributed to changes in the phase behavior of the lipids caused by the inclusion of cholesterol or to differences in the secondary structure of the peptides. These results suggest that eukaryotic cells are resistant to lysis by magainins because of peptide-cholesterol interactions in their membranes that inhibit the formation of peptide structures capable of lysis, perhaps by hydrogen bonding between Glu and cholesterol. Bacterial membranes, lacking cholesterol, are susceptible to lysis by magainins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.