We present the results of two exploratory parsimony analyses of DNA sequences from 475 and 499 species of seed plants, respectively, representing all major taxonomic groups. The data are exclusively from the chloroplast gene rbcL, which codes for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO or RuBPCase). We used two different state-transformation assumptions resulting in two sets of cladograms: (i) equal-weighting for the 499-taxon analysis; and (ii) a procedure that differentially weights transversions over transitions within characters and codon positions among characters for the 475-taxon analysis. The degree of congruence between these results and other molecular, as well as morphological, cladistic studies indicates that rbcL sequence variation contains historical evidence appropriate for phylogenetic analysis at this taxonomic level of sampling. Because the topologies presented are necessarily approximate and cannot be evaluated adequately for internal support, these results should be assessed from the perspective of their predictive value and used to direct future studies, both molecular and morphological. In both analyses, the three genera of Gnetales are placed together as the sister group of the flowering plants, and the anomalous aquatic Ceratophyllum (Ceratophyllaceae) is sister to all other flowering plants. Several major lineages identified correspond well with at least some recent taxonomic schemes for angiosperms, particularly those of Dahlgren and Thorne. The basalmost clades within the angiosperms are orders of the apparently polyphyletic subclass Magnoliidae sensu Cronquist. The most conspicuous feature of the topology is that the major division is not monocot versus dicot, but rather one correlated with general pollen type: uniaperturate versus triaperturate. The Dilleniidae and Hamamelidae are the only subclasses that are grossly polyphyletic; an examination of the latter is presented as an example of the use of these broad analyses to focus more restricted studies. A broadly circumscribed Rosidae is paraphyletic to Asteridae and Dilleniidae. Subclass Caryophyllidae is monophyletic and derived from within Rosidae in the 475-taxon analysis but is sister to a group composed of broadly delineated Asteridae and Rosidae in the 499-taxon study.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.. American Society of Plant Taxonomists is collaborating with JSTOR to digitize, preserve and extend access to Systematic Botany.
ABSTRACT.Aquatic species represent fewer than two percent of all flowering plants, and only 18 aquatic genera have acquired true hydrophily (water-pollination) which is associated with an unusually high incidence of unisexual flowers. From the subset of submersed, hydrophilous angiosperms, only 13 genera have colonized marine habitats. The evolution of hydrophily, unisexuality, and marine habit in angiosperms was explored using estimates of phylogeny obtained by phylogenetic analyses of chloroplast (rbcL) gene sequence data. Despite what might appear to be difficult evolutionary transitions, hydrophiles are highly polyphyletic with independent origins in the monocotyledon subclass Alismatidae in addition to two derivations in the dicotyledon families Ceratophyllaceae and Callitrichaceae. Yet, even in alismatids, hydrophily has evolved many times. Unisexuality has also evolved repeatedly in the Alismatidae, and is ancestral to the evolution of hydrophiles and marine plants in the Hydrocharitaceae. Marine angiosperms (known only from Alismatidae) have evolved in three separate lineages. The multiple origins of hydrophilous, marine plants offer an extraordinary example of convergent evolution in angiosperms.
Global seagrass losses parallel significant declines observed in corals and mangroves over the past 50 years. These combined declines have resulted in accelerated global losses to ecosystem services in coastal waters. Seagrass meadows can be extensive (hundreds of square kilometers) and longlived (thousands of years), with the meadows persisting predominantly through vegetative (clonal) growth. They also invest a large amount of energy in sexual reproduction. In this article, we explore the role that sexual reproduction, pollen, and seed dispersal play in maintaining species distributions, genetic diversity, and connectivity among seagrass populations. We also address the relationship between long-distance dispersal, genetic connectivity, and the maintenance of genetic diversity that may enhance resilience to stresses associated with seagrass loss. Our reevaluation of seagrass dispersal and recruitment has altered our perception of the importance of long-distance dispersal and has revealed extensive dispersal at scales much larger than was previously thought possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.