Many interesting dynamic properties of biological molecules cannot be simulated directly using molecular dynamics because of nanosecond time scale limitations. These systems are trapped in potential energy minima with high free energy barriers for large numbers of computational steps. The dynamic evolution of many molecular systems occurs through a series of rare events as the system moves from one potential energy basin to another. Therefore, we have proposed a robust bias potential function that can be used in an efficient accelerated molecular dynamics approach to simulate the transition of high energy barriers without any advance knowledge of the location of either the potential energy wells or saddle points. In this method, the potential energy landscape is altered by adding a bias potential to the true potential such that the escape rates from potential wells are enhanced, which accelerates and extends the time scale in molecular dynamics simulations. Our definition of the bias potential echoes the underlying shape of the potential energy landscape on the modified surface, thus allowing for the potential energy minima to be well defined, and hence properly sampled during the simulation. We have shown that our approach, which can be extended to biomolecules, samples the conformational space more efficiently than normal molecular dynamics simulations, and converges to the correct canonical distribution.
Localized water molecules in the binding pockets of proteins play an important role in noncovalent association of proteins and small drug compounds. At times, the dominant contribution to the binding free energy comes from the release of localized water molecules in the binding pockets of biomolecules. Therefore, to quantify the energetic importance of these water molecules for drug design purposes, we have used the double-decoupling approach to calculate the standard free energy of tying up a water molecule in the binding pockets of two protein complexes. The double-decoupling approach is based on the underlying principle of statistical thermodynamics. We have calculated the standard free energies of tying up the water molecule in the binding pockets of these complexes to be favorable. These water molecules stabilize the protein-drug complexes by interacting with the ligands and binding pockets. Our results offer ideas that could be used in optimizing protein-drug interactions, by designing ligands that are capable of targeting localized water molecules in protein binding sites. The resulting free energy of ligand binding could benefit from the potential free energy gain accompanying the release of these water molecules. Furthermore, we have examined the theoretical background of the double-decoupling method and its connection to the molecular dynamics thermodynamic integration techniques.
Slow diffusive conformational transitions play key functional roles in biomolecular systems. Our ability to sample these motions with molecular dynamics simulation in explicit solvent is limited by the slow diffusion of the solvent molecules around the biomolecules. Previously, we proposed an accelerated molecular dynamics method that has been shown to efficiently sample the torsional degrees of freedom of biomolecules beyond the millisecond timescale. However, in our previous approach, large-amplitude displacements of biomolecules are still slowed by the diffusion of the solvent. Here we present a unified approach of efficiently sampling both the torsional degrees of freedom and the diffusive motions concurrently. We show that this approach samples the configuration space more efficiently than normal molecular dynamics and that ensemble averages converge faster to the correct values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.