Mesenchymal stem cells (MSCs) have great therapeutic potential, with the capacity to influence diverse medical applications, such as tissue engineering and gene therapy. Our findings indicate that autocrine Wnt signaling operates in primitive MSC populations and supports previous evidence that Wnt signaling regulates mesenchymal lineage specification. The identification of a putative common Wnt/Fz molecular signature in MSCs will contribute to our understanding of the molecular mechanisms that regulate self-renewal and lineage-specific differentiation.
Biodegradable polymer/hydroxyapatite (HA) composites have potential application as bone graft substitutes. Thin films of polymer/HA composites were produced, and the initial attachment of primary human osteoblasts (HOBs) was assessed to investigate the biocompatibility of the materials. Poly(epsilon-caprolactone) (PCL) and poly(L-lactic acid) (PLA) were used as matrix materials for two types of HA particles, 50-microm sintered and submicron nonsintered. Using ESEM, cell morphology on the surfaces of samples was investigated after 90 min, 4 h, and 24 h of cell culture. Cell activity and viability were assessed after 24 h of cell culture using Alamar blue and DNA assays. Surface morphology of the polymer/HA composites and HA exposure were investigated using ESEM and EDXA, respectively. ESEM enabled investigation of both cell and material surface morphology in the hydrated condition. Combined with EDXA it permitted chemical and visual examination of the composite. Differences in HA exposure were observed on the different composite surfaces that affected the morphology of attached cells. In the first 4 h of cell culture, the cells were spread to a higher degree on exposed HA regions of the composites and on PLA than they were on PCL. After 24 h the cells were spread equally on all the samples. The cell activity after 24 h was significantly higher on the polymer/HA composites than on the polymer films. There was no significant difference in the activity of the cells on the various composite materials. However, cells on PCL showed higher activity compared to those on PLA. A polymer surface exhibiting "point exposure" of HA appeared to provide a novel and favorable substrate for primary cell attachment. The cell morphology and activity results indicate a favorable cell/material interaction and suggest that PLA and PCL and their composites with HA may be candidate materials for the reconstruction of bony tissue. Further investigations regarding long-term biomaterial/cell interactions and the effects of acidic degradation products from the biodegradable polymers are required to confirm their utility.
Multiple myeloma (MM) is associated with the development of osteolytic bone disease, mediated by increased osteoclastic bone resorption and impaired osteoblastic bone formation. Dickkopf-1 (Dkk1), a soluble inhibitor of wingless/int (Wnt) signaling and osteoblastogenesis, is elevated in patients with MM and correlates with osteolytic bone disease. In this study, we investigated the effect of inhibiting Dkk1 on the development of osteolytic lesions in the 5T2MM murine model of myeloma. We showed that Dkk1 is expressed by murine 5T2MM myeloma cells. Injection of 5T2MM cells into C57BL/KaLwRij mice resulted in the development of osteolytic bone lesions (p < 0.05), mediated by increased osteoclast numbers (p < 0.001) and a decrease in osteoblast numbers (p < 0.001) and mineralizing surface (p < 0.05). Mice bearing 5T2MM cells were treated with an anti-Dkk1 antibody (BHQ880, 10 mg/kg, IV, twice weekly for 4 wk) from time of paraprotein detection. Anti-Dkk1 treatment prevented 5T2MM-induced suppression of osteoblast numbers (p < 0.001) and surface (p < 0.001). Treatment increased mineralizing surface by 28% and bone formation rate by 25%; however, there was no change in mineral apposition rate. Inhibiting Dkk1 had no effect on osteoclast numbers. mCT analysis showed that anti-Dkk1 treatment significantly protected against 5T2MM-induced trabecular bone loss (p < 0.05) and reduced the development of osteolytic bone lesions (p < 0.05). Treatment had no significant effect on tumor burden. These data suggest that inhibiting Dkk1 prevents the suppression of bone formation and in doing so is effective in preventing the development of osteolytic bone disease in myeloma, offering an effective therapeutic approach to treating this clinically important aspect of myeloma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.