Dengue is a major public health concern in the tropical and subtropical world, with no effective treatment. The controversial live attenuated virus vaccine Dengvaxia has boosted the pursuit of subunit vaccine approaches, and nonstructural protein 1 (NS1) has recently emerged as a promising candidate. However, we found that NS1 immunization or passive transfer of NS1 antibodies failed to confer protection in symptomatic dengue mouse models using two non–mouse-adapted DENV2 strains that are highly virulent. Exogenous administration of purified NS1 also failed to worsen in vivo vascular leakage in sublethally infected mice. Neither method of NS1 immune neutralization changed the disease outcome of a chimeric strain expressing a vascular leak-potent NS1. Instead, virus chimerization involving the prME structural region indicated that these proteins play a critical role in driving in vivo fitness and virulence of the virus, through induction of key proinflammatory cytokines. This work highlights that the pathogenic role of NS1 is DENV strain dependent, which warrants reevaluation of NS1 as a universal dengue vaccine candidate.
Introduction: Dengue is a prevalent disease in tropical and subtropical countries with an estimated 400 million people infected annually. While significant advancement has been made in the chase for an effective dengue vaccine, the recently licensed Sanofi vaccine was, in contrast to in vitro data, only partially protective. Areas covered: This suggests that our understanding of the serological correlates for dengue is currently inadequate. With growing evidence supporting the role of fragment crystalizable gamma receptors (FcγRs) in antibody-mediated neutralization or antibody-dependent enhancement (ADE) of dengue virus (DENV) infection, FcγR-expressing cells have been increasingly used for measuring neutralizing antibody responses elicited by dengue vaccines. Here, we review the mechanisms of how FcγRs modulates both DENV neutralization and enhanced infections via its interactions with antibodies. Expert commentary: This review provides insights on the importance of factoring FcγRs for in vitro neutralization assays. Bridging the gap between in vitro and clinical observations would allow researchers to more accurately predict in vivo vaccine efficacy. ARTICLE HISTORY
Metallocarboxypeptidases play critical roles in the development of mosquitoes and influence pathogen/parasite infection of the mosquito midgut. Here, we report the crystal structure of Aedes aegypti procarboxypeptidase B1 (PCPBAe1), characterized its substrate specificity and mechanism of binding to and inhibiting Dengue virus (DENV). We show that the activated PCPBAe1 (CPBAe1) hydrolyzes both Arg- and Lys-substrates, which is modulated by residues Asp251 and Ser239. Notably, these residues are conserved in CPBs across mosquito species, possibly required for efficient digestion of basic dietary residues that are necessary for mosquito reproduction and development. Importantly, we characterized the interaction between PCPBAe1 and DENV envelope (E) protein, virus-like particles, and infectious virions. We identified residues Asp18A, Glu19A, Glu85, Arg87, and Arg89 of PCPBAe1 are essential for interaction with DENV. PCPBAe1 maps to the dimeric interface of the E protein domains I/II (Lys64–Glu84, Val238–Val252, and Leu278–Leu287). Overall, our studies provide general insights into how the substrate-binding property of mosquito carboxypeptidases could be targeted to potentially control mosquito populations or proposes a mechanism by which PCPBAe1 binds to and inhibits DENV.
Dengue is a major public health concern in the tropical and sub-tropical world with no effective treatment. The controversial live attenuated virus vaccine Dengvaxia has boosted the pursuit of sub-unit vaccine approaches, and the non-structural protein 1 (NS1) has recently emerged as a promising candidate. However, we found that NS1 immunization or passive transfer of NS1 antibodies failed to confer protection in symptomatic dengue mouse models using two non mouse-adapted DENV2 strains from the Cosmopolitan genotype that currently circulates in South-East Asia. Furthermore, exogenous administration of purified NS1 did not worsen in vivo vascular leakage in sub-lethally infected mice, thereby supporting that NS1 does not play a critical role in the pathogenesis of these DENV2 strains. Virus chimerization approaches indicated that the prME structural region, but not NS1, plays a critical role in driving in vivo fitness and virulence of the virus, through induction of key pro-inflammatory cytokines. This work highlights that the pathogenic role of NS1 is DENV strain-dependent, which warrants re-evaluation of NS1 as a universal dengue vaccine candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.