Harmonic waves are generated from nonlinear distortion of an acoustic signal as an ultrasound wave insonates tissues in the body. These beams are integer multiples of a fundamental transmitted frequency. Potential advantages of harmonic imaging include improved axial resolution due to higher frequencies and better lateral resolution due to narrower beams. Decreased noise from side lobes improves signal-to-noise ratios and reduces artifacts. Deleterious effects of the body wall are also reduced. The authors prospectively studied ultrasonographic (US) findings in 100 adult patients with 202 abdominal lesions by comparing harmonic US images with conventional US images. The results were subjected to statistical analysis. Harmonic imaging was superior to conventional US in regard to lesion visibility and diagnostic confidence. Harmonic imaging was particularly useful for depicting cystic lesions and those containing echogenic tissues such as fat, calcium, or air. In patients with a body mass index of 30 or more, harmonic imaging was clearly better for lesion visibility and confidence of diagnosis. The authors recommend routine use of harmonic imaging for abdominal US studies in all adult patients.
Systematic measurements of maximum depth of penetration (DOP) of ultrasound (US) scanners are essential for quality control (QC). Conventionally, DOP measurements are performed visually and as such they could be affected by various external factors, scanner control settings, and operator related errors. Automated methods should be free of the issues associated with interoperator dependence and are an attractive alternative to the visual DOP measurements. We implement and test three automated methods for measuring DOP. The methods base their measurements on signal to noise (SNR) analysis of uniform US phantom images. Two of the methods use pairs of phantom images. The third one uses a single phantom image and an "in-air" image. The validation tests included precision, sensitivity, repeatability, and usability in routine QC application. Methods based on pairs of phantom images measure the DOP with precision +/-0.2 cm or better. Precision of the single phantom image method is +/-0.05 cm, and that method is also the most sensitive of the three. All three methods are demonstrated to be repeatable among different users. Since the images for the DOP computation are collected free-hand the sensitivity to hand-transducer motion during image acquisition was also tested. Unlike the single-phantom-image based method, the methods using image pairs were found to be very sensitive to transducer motion and therefore less convenient for clinical QC applications. In conclusion, the single-phantom-image method is best suited for routine QC in a real-life clinical practice.
Routine quality control of ultrasound scanners and transducers is important for maintaining image quality. Our experience suggests that artefact and uniformity evaluation is the most effective single phantom test for detecting equipment problems. Current methods for assessing ultrasound images for artefacts have important limitations. To overcome these limitations, we have developed a novel, low-cost, liquid phantom with a flexible surface for assessing artefacts. A range of materials were evaluated and the optimal liquid phantom was found to be a water/cornstarch solution contained within a flexible latex balloon. When compared to a rigid tissue-mimicking phantom no deficiencies in overall image appearance or artefact detection for any transducer model was observed for the liquid phantom. With minimal training, reproducible clips were obtained by clinical sonographers with low inter- and intra-operator dependence, for a range of transducers models. The flexible scanning surface of the liquid phantom allows complete rapid coupling of all transducers. Due to its ease of use and low cost this liquid phantom appears superior to rigid phantoms for assessment of non-uniformity artefacts, and should allow clinical practices to perform routine artefact assessments of all ultrasound scanners and transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.