Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labeling.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:Current regulatory guidances do not address specific study designs for in vitro and in vivo drug-drug interaction studies. There is a common desire by regulatory authorities and by industry sponsors to harmonize approaches, to allow for a better assessment of the significance of findings across different studies and drugs. There is also a growing consensus for the standardization of cytochrome P450 (P450) probe substrates, inhibitors and inducers and for the development of classification systems to improve the communication of risk to health care providers and to patients. While existing guidances cover mainly P450-mediated drug interactions, the importance of other mechanisms, such as transporters, has been recognized more recently, and should also be addressed. This article was prepared by the Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism and Clinical Pharmacology Technical Working Groups and represents the current industry position. The intent is to define a minimal best practice for in vitro and in vivo pharmacokinetic drug-drug interaction studies targeted to development (not discovery support) and to define a data package that can be expected by regulatory agencies in compound registration dossiers.Drug-drug interactions can lead to severe side effects and have resulted in early termination of development, refusal of approval, severe prescribing restrictions, and withdrawal of drugs from the market. Regulators, including the U.S. Food and Drug Administration (FDA 1 ) have therefore issued guidances for in vitro and in vivo drug interaction studies to be conducted during development. These guidances, however, do not address the specific designs of the studies, and there is a desire by regulatory authorities to harmonize approaches and study designs to allow for a better assessment and comparison of different drugs. In addition, the existing guidances cover mainly cytochrome P450 (P450)-mediated drug interactions and the importance of other mechanisms, such as transporters, has been recognized only recently. To address these issues, workshops have been held in
The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.
Current regulatory guidances do not address specific study designs for in vitro and in vivo drug-drug interaction studies. There is a common desire by regulatory authorities and by industry sponsors to harmonize approaches to allow for a better assessment of the significance of findings across different studies and drugs. There is also a growing consensus for the standardization of cytochrome P450 (CYP) probe substrates, inhibitors, and inducers and for the development of classification systems to improve the communication of risk to health care providers and patients. While existing guidances cover mainly CYP-mediated drug interactions, the importance of other mechanisms, such as transporters, has been recognized more recently and should also be addressed. This paper was prepared by the Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism and Clinical Pharmacology Technical Working Groups and represents the current industry position. The intent is to define a minimal best practice for in vitro and in vivo pharmacokinetic drug-drug interaction studies targeted to development (not discovery support) and to define a data package that can be expected by regulatory agencies in compound registration dossiers.
The International Transporter Consortium (ITC) organized a second workshop in March 2012 to expand on the themes developed during the inaugural ITC workshop held in 2008. The final session of the workshop provided perspectives from regulatory and industry-based scientists, with input from academic scientists, and focused primarily on the decision trees published from the first workshop. These decision trees have become a central part of subsequent regulatory drug-drug interaction (DDI) guidances issued over the past few years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.