A 2-O-benzyl-3,5-O-benzylidene-alpha-d-thioarabinofuranoside was obtained by reaction of the corresponding diol with alpha,alpha-dibromotoluene under basic conditions. On activation with 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride in dichloromethane at -55 degrees C, reaction with glycosyl acceptors affords anomeric mixtures with little or no selectivity. The analogous 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-d-thioarabinofuranoside also showed no significant selectivity under the 1-benzenesulfinyl piperidine or diphenyl sulfoxide conditions. With N-iodosuccinimide and silver trifluoromethanesulfonate the silylene acetal showed moderate to high beta-selectivity, independent of the configuration of the starting thioglycoside. High beta-selectivity was also obtained with a 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-alpha-arabinofuranosyl sulfoxide donor on activation with trifluoromethanesulfonic anhydride. The high beta-selectivities obtained by the N-iodosuccinimide/silver trifluoromethanesulfonate and sulfoxide methods are consistent with a common intermediate, most likely to be the oxacarbenium ion. The poor selectivity observed on activation of the thioglycosides with the 1-benzenesulfinyl piperidine, or diphenyl sulfoxide, and trifluoromethanesulfonic anhydride methods appears to be the result of the formation of a complex mixture of glycosyl donors, as determined by low-temperature NMR work.
We report here a method for synthesizing CdSe quantum dots (QDs) containing copper such that each QD is doped with four copper ions. The synthesis is a derivative of the cluster-seed method, whereby organometallic clusters act as nucleation centers for quantum dots. The method is tolerant of the chemical identity of the seed; as such, we have doped four copper ions into CdSe QDs using [Na(H2O)3]2[Cu4(SPh)6] as a cluster seed. The controlled doping allows us to monitor the photophysical properties of guest ions with X-ray spectroscopy, specifically XANES and EXAFS at the copper K-edge. These data reveal that copper can capture both electrons and holes from photoexcited CdSe QDs. When the dopant is oxidized, photoluminescence is quenched and the copper ions translocate within the CdSe matrix, which slows the return to an emissive state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.