Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct “Paleoamericans.” We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.
In spite of decades of intense research directed toward understanding the climates and ecology of the Great Basin (western United States) during the past 10,000 years, the responses of mammals to the extreme aridity of the Middle Holocene (c. 8000–5000 years ago) in this region have been poorly understood. Using a well‐dated small mammal sequence from Homestead Cave, north‐central Utah, I show that the Middle Holocene small mammal faunas of this area underwent a decrease in species richness and evenness, driven largely by a series of local extinctions and near‐extinctions coupled with a dramatic increase in the abundance of taxa well‐adapted to xeric conditions. At the end of this period, some taxa that require relatively mesic habitats began to increase in abundance immediately, others did not rebound in abundance until several thousand years later, while still others have not returned at all. This suite of responses has been difficult to detect because climatic change at the beginning of the Middle Holocene was so much more substantial than that which occurred toward its end.
The argument that human hunters were responsible for the extinction of a wide variety of large Pleistocene mammals emerged in western Europe during the 1860s, alongside the recognition that people had coexisted with those mammals. Today, the overkill position is rejected for western Europe but lives on in Australia and North America. The survival of this hypothesis is due almost entirely to Paul Martin, the architect of the first detailed version of it. In North America, archaeologists and paleontologists whose work focuses on the late Pleistocene routinely reject Martin's position for two prime reasons: there is virtually no evidence that supports it, and there is a remarkably broad set of evidence that strongly suggests that it is wrong. In response, Martin asserts that the overkill model predicts a lack of supporting evidence, thus turning the absence of empirical support into support for his beliefs. We suggest that this feature of the overkill position removes the hypothesis from the realm of science and places it squarely in the realm of faith. One may or may not believe in the overkill position, but one should not confuse it with a scientific hypothesis about the nature of the North American past.
Aim Within the past few decades, seven of the 25 historically described populations of American pikas (Ochotona princeps) in the Great Basin of arid western North America appear to have become extinct. In this paper, the prehistoric record for pikas in the Great Basin is used to place these losses in deeper historical context. Location The Great Basin, or area of internal drainage, of the western United States. Methods The location, elevation, and age of all reported prehistoric Great Basin specimens of American pikas were extracted from the literature. Elevations of extinct pika populations were arrayed through time, and latitudes and longitudes of those populations used to determine changing distances of those populations from the nearest extant populations. Results The average elevation of now‐extinct Great Basin pika populations during the late Wisconsinan (c. 40,000–10,000 radiocarbon years ago) and early Holocene (c. 10,000–7500 years ago) was 1750 m. During the hot and dry middle Holocene (c. 7500–4500 years ago), the average elevation of these populations rose 435 m, to 2168 m. All prehistorically known late Holocene (c. 4500–200 years ago) populations in the Great Basin are from mountain ranges that currently support populations of this animal, but historic period losses have caused the average elevation of pika populations to rise an additional 152 m. The total elevational increase, from the late Wisconsinan and early Holocene to today, has been 783 m. As lower elevation pika populations were lost, their distribution increasingly came to resemble its modern form. During the late Wisconsinan, now‐extinct pika populations were located an average of 170 km from the nearest extant population. By the late Holocene, this distance had declined to 30 km. Main conclusions Prehistoric alterations in the distribution of pika population in the Great Basin were driven by climate change and attendant impacts on vegetation. Today, Great Basin pikas contend with both climate change and anthropogenic impacts and thus may be on the brink of extinction.
Around 88 large vertebrate taxa disappeared from Sahul sometime during the Pleistocene, with the majority of losses (54 taxa) clearly taking place within the last 400,000 years. The largest was the 2.8-ton browsing Diprotodon optatum, whereas the ∼100-to 130-kg marsupial lion, Thylacoleo carnifex, the world's most specialized mammalian carnivore, and Varanus priscus, the largest lizard known, were formidable predators. Explanations for these extinctions have centered on climatic change or human activities. Here, we review the evidence and arguments for both. Human involvement in the disappearance of some species remains possible but unproven. Mounting evidence points to the loss of most species before the peopling of Sahul (circa 50-45 ka) and a significant role for climate change in the disappearance of the continent's megafauna. megafauna extinction | Pleistocene extinctions | archaeology | human colonization | faunal turnover
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.