This paper presents a multiscale Petrov-Galerkin finite element method for time-harmonic acoustic scattering problems with heterogeneous coefficients in the high-frequency regime. We show that the method is pollutionfree also in the case of heterogeneous media provided that the stability bound of the continuous problem grows at most polynomially with the wave number k. By generalizing classical estimates of [Melenk, Ph.D. Thesis 1995] and [Hetmaniuk, Commun. Math. Sci. 5 (2007)] for homogeneous medium, we show that this assumption of polynomially wave number growth holds true for a particular class of smooth heterogeneous material coefficients. Further, we present numerical examples to verify our stability estimates and implement an example in the wider class of discontinuous coefficients to show computational applicability beyond our limited class of coefficients.
The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method.
In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits.
In this paper we develop a multiscale method to solve problems in complicated porous microstructures with Neumann boundary conditions. By using a coarse-grid quasi-interpolation operator to define a fine detail space and local orthogonal decomposition, we construct multiscale corrections to coarse-grid basis functions with microstructure. By truncating the corrector functions we are able to make a computationally efficient scheme. Error results and analysis are presented. A key component of this analysis is the investigation of the Poincaré constants in perforated domains as they may contain micro-structural information. Using a constructive method originally developed for weighted Poincaré inequalities, we are able to obtain estimates on Poincaré constants with respect to scale and separation length of the pores. Finally, two numerical examples are presented to verify our estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.