Here, we report a catalytic beacon sensor for uranyl (UO 2 2؉ ) based on an in vitro-selected UO 2 2؉ -specific DNAzyme. The sensor consists of a DNA enzyme strand with a 3 quencher and a DNA substrate with a ribonucleotide adenosine (rA) in the middle and a fluorophore and a quencher at the 5 and 3 ends, respectively. The presence of UO 2 2؉ causes catalytic cleavage of the DNA substrate strand at the rA position and release of the fluorophore and thus dramatic increase of fluorescence intensity. The sensor has a detection limit of 11 parts per trillion (45 pM), a dynamic range up to 400 nM, and selectivity of >1-million-fold over other metal ions. The most interfering metal ion, Th(IV), interacts with the fluorescein fluorophore, causing slightly enhanced fluorescence intensity, with an apparent dissociation constant of Ϸ230 M. This sensor rivals the most sensitive analytical instruments for uranium detection, and its application in detecting uranium in contaminated soil samples is also demonstrated. This work shows that simple, cost-effective, and portable metal sensors can be obtained with similar sensitivity and selectivity as much more expensive and sophisticated analytical instruments. Such a sensor will play an important role in environmental remediation of radionuclides such as uranium.DNA ͉ DNAzyme ͉ fluorescence ͉ deoxyribozyme ͉ catalytic DNA
Organized cellular alignment is critical to controlling tissue microarchitecture and biological function. Although a multitude of techniques have been described to control cellular alignment in 2D, recapitulating the cellular alignment of highly organized native tissues in 3D engineered tissues remains a challenge. While cellular alignment in engineered tissues can be induced through the use of external physical stimuli, there are few simple techniques for microscale control of cell behavior that are largely cell-driven. In this study we present a simple and direct method to control the alignment and elongation of fibroblasts, myoblasts, endothelial cells and cardiac stem cells encapsulated in microengineered 3D gelatin methacrylated (GelMA) hydrogels, demonstrating that cells with the intrinsic potential to form aligned tissues in vivo will self-organize into functional tissues in vitro if confined in the appropriate 3D microarchitecture. The presented system may be used as an in vitro model for investigating cell and tissue morphogenesis in 3D, as well as for creating tissue constructs with microscale control of 3D cellular alignment and elongation, that could have great potential for the engineering of functional tissues with aligned cells and anisotropic function.
We report on a novel type of triblock copolymer polymersomes with temperature-controlled permeability within the physiologically relevant temperature range of 37–42 °C for sustained delivery of anticancer drugs. These polymersomes combine characteristics of liposomes, such as biocompatibility, biodegradability, monodispersity, and stability at room temperature, with tunable size and thermal responsiveness provided by amphiphilic triblock copolymers. The temperature-sensitive poly(N-vinylcaprolactam) n -poly(dimethylsiloxane)65-poly(N-vinylcaprolactam) n (PVCL n -PDMS65-PVCL n ) copolymers with n = 10, 15, 19, 29, and 50 and polydispersity indexes less than 1.17 are synthesized by controlled RAFT polymerization. The copolymers are assembled into stable vesicles at room temperature when the ratio of PVCL to the total polymer mass is 0.36 < f < 0.52 with the polymersome diameter decreasing from 530 to 40 nm as the length of PVCL is increased from 10 to 19 monomer units. Importantly, the permeability of polymersomes loaded with the anticancer drug doxorubicin can be precisely controlled by PVCL length in the temperature range of 37–42 °C. Increasing the temperature above the lower critical solution temperature of PVCL results in either gradual vesicle shrinkage (n = 10 and n = 15) or reversible formation of beadlike aggregates with no size change (n = 19), both leading to sustained drug release. All temperature-triggered morphological changes are reversible and do not compromise the structural stability of the vesicles. Finally, concentration- and time-dependent cytotoxicity of drug-loaded polymersomes to human alveolar adenocarcinoma cells is demonstrated. Considering the high loading capacity (∼40%) and temperature responsiveness in the physiological range, these polymer vesicles have considerable potential as novel types of stimuli-responsive drug nanocarriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.