We report on a novel type of triblock copolymer polymersomes with temperature-controlled permeability within the physiologically relevant temperature range of 37–42 °C for sustained delivery of anticancer drugs. These polymersomes combine characteristics of liposomes, such as biocompatibility, biodegradability, monodispersity, and stability at room temperature, with tunable size and thermal responsiveness provided by amphiphilic triblock copolymers. The temperature-sensitive poly(N-vinylcaprolactam) n -poly(dimethylsiloxane)65-poly(N-vinylcaprolactam) n (PVCL n -PDMS65-PVCL n ) copolymers with n = 10, 15, 19, 29, and 50 and polydispersity indexes less than 1.17 are synthesized by controlled RAFT polymerization. The copolymers are assembled into stable vesicles at room temperature when the ratio of PVCL to the total polymer mass is 0.36 < f < 0.52 with the polymersome diameter decreasing from 530 to 40 nm as the length of PVCL is increased from 10 to 19 monomer units. Importantly, the permeability of polymersomes loaded with the anticancer drug doxorubicin can be precisely controlled by PVCL length in the temperature range of 37–42 °C. Increasing the temperature above the lower critical solution temperature of PVCL results in either gradual vesicle shrinkage (n = 10 and n = 15) or reversible formation of beadlike aggregates with no size change (n = 19), both leading to sustained drug release. All temperature-triggered morphological changes are reversible and do not compromise the structural stability of the vesicles. Finally, concentration- and time-dependent cytotoxicity of drug-loaded polymersomes to human alveolar adenocarcinoma cells is demonstrated. Considering the high loading capacity (∼40%) and temperature responsiveness in the physiological range, these polymer vesicles have considerable potential as novel types of stimuli-responsive drug nanocarriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.