Myocardial infarction leads to loss of tissue and impairment of cardiac performance. The remaining myocytes are unable to reconstitute the necrotic tissue, and the post-infarcted heart deteriorates with time. Injury to a target organ is sensed by distant stem cells, which migrate to the site of damage and undergo alternate stem cell differentiation; these events promote structural and functional repair. This high degree of stem cell plasticity prompted us to test whether dead myocardium could be restored by transplanting bone marrow cells in infarcted mice. We sorted lineage-negative (Lin-) bone marrow cells from transgenic mice expressing enhanced green fluorescent protein by fluorescence-activated cell sorting on the basis of c-kit expression. Shortly after coronary ligation, Lin- c-kitPOS cells were injected in the contracting wall bordering the infarct. Here we report that newly formed myocardium occupied 68% of the infarcted portion of the ventricle 9 days after transplanting the bone marrow cells. The developing tissue comprised proliferating myocytes and vascular structures. Our studies indicate that locally delivered bone marrow cells can generate de novo myocardium, ameliorating the outcome of coronary artery disease.
Attempts to repair myocardial infarcts by transplanting cardiomyocytes or skeletal myoblasts have failed to reconstitute healthy myocardium and coronary vessels integrated structurally and functionally with the remaining viable portion of the ventricular wall. The recently discovered growth and transdifferentiation potential of primitive bone marrow cells (BMC) prompted us, in an earlier study, to inject in the border zone of acute infarcts Lin ؊ c-kit POS BMC from syngeneic animals. These BMC differentiated into myocytes and vascular structures, ameliorating the function of the infarcted heart. Two critical determinants seem to be required for the transdifferentiation of primitive BMC: tissue damage and a high level of pluripotent cells. On this basis, we hypothesized here that BMC, mobilized by stem cell factor and granulocyte-colony stimulating factor, would home to the infarcted region, replicate, differentiate, and ultimately promote myocardial repair. We report that, in the presence of an acute myocardial infarct, cytokine-mediated translocation of BMC resulted in a significant degree of tissue regeneration 27 days later. Cytokineinduced cardiac repair decreased mortality by 68%, infarct size by 40%, cavitary dilation by 26%, and diastolic stress by 70%. Ejection fraction progressively increased and hemodynamics significantly improved as a consequence of the formation of 15 ؋ 10 6 new myocytes with arterioles and capillaries connected with the circulation of the unaffected ventricle. In conclusion, mobilization of primitive BMC by cytokines might offer a noninvasive therapeutic strategy for the regeneration of the myocardium lost as a result of ischemic heart disease and, perhaps, other forms of cardiac pathology.
The site of origin of lymphohematopoietic stem cells (HSC) that initiate definitive blood cell production in the murine fetal liver is controversial. Contrary to reports that the preliver yolk sac does not contain definitive HSC, we observed that CD34+ day 9 yolk sac cells repopulated multiple blood cell lineages in newborn hosts for at least 1 year. Furthermore, 100 CD34+c-Kit+ day 9 yolk sac or para-aortic splanchnopleura (P-Sp) cells, known to give rise to embryonic HSC, similarly repopulated hematopoiesis in recipient hosts. Surprisingly, 37-fold more CD34+c-Kit+ cells reside in the day 9 yolk sac than in the P-Sp. In sum, definitive HSC are coexistent, but not equal in number, in the murine yolk sac and P-Sp prior to fetal liver colonization.
Rationale: The ability of the human heart to regenerate large quantities of myocytes remains controversial, and the extent of myocyte renewal claimed by different laboratories varies from none to nearly 20% per year. Objective: To address this issue, we examined the percentage of myocytes, endothelial cells, and fibroblasts labeled by iododeoxyuridine in postmortem samples obtained from cancer patients who received the thymidine analog for therapeutic purposes. Additionally, the potential contribution of DNA repair, polyploidy, and cell fusion to the measurement of myocyte regeneration was determined. Methods and Results: The fraction of myocytes labeled by iododeoxyuridine ranged from 2.5% to 46%, and similar values were found in fibroblasts and endothelial cells. An average 22%, 20%, and 13% new myocytes, fibroblasts, and endothelial cells were generated per year, suggesting that the lifespan of these cells was approximately 4.5, 5, and 8 years, respectively. The newly formed cardiac cells showed a fully differentiated adult phenotype and did not express the senescence-associated protein p16 INK4a. Moreover, measurements by confocal microscopy and flow cytometry documented that the human heart is composed predominantly of myocytes with 2n diploid DNA content and that tetraploid and octaploid nuclei constitute only a small fraction of the parenchymal cell pool. Importantly, DNA repair, ploidy formation, and cell fusion were not implicated in the assessment of myocyte regeneration. Conclusions: Our findings indicate that the human heart has a significant growth reserve and replaces its myocyte and nonmyocyte compartment several times during the course of life. (Circ Res. 2010;107:305-315.)Key Words: myocyte regeneration Ⅲ cell lifespan Ⅲ DNA repair Ⅲ ploidy Ⅲ cell fusion F or nearly a century, the adult heart has been considered a postmitotic organ in which the number of parenchymal cells is established at birth and cardiomyocytes lost with age or as a result of cardiac diseases cannot be replaced by newly formed cells. The recent explosion of the field of stem cell biology, with the recognition that the possibility exists for extrinsic and intrinsic regeneration of myocytes and coronary vessels, 1 has imposed a reevaluation of cardiac homeostasis and pathology. Several laboratories have identified resident cardiac stem cells (CSCs) in the developing, postnatal, and adult heart of animals and humans, 2-4 suggesting that myocyte turnover and tissue regeneration may be more profound than previously predicted.The documentation that CSCs reside in the myocardium, are stored in discrete niche structures, and divide symmetrically and asymmetrically in vitro and in vivo 4 makes the heart a selfrenewing organ. Cardiac cells continuously lost by wear and tear are constantly replaced by activation and commitment of CSCs. 5 Based on retrospective 14 C birth dating of cells, the claim has been made that throughout life, myocyte turnover in humans is restricted to a subset of Ϸ50% of cardiomyocytes. 6 Although the process...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.