Chemotherapeutic regimens for the treatment of colorectal cancer generally include oxaliplatin, although inherent and acquired resistance is common. One potential mediator of oxaliplatin sensitivity is the nonreceptor protein tyrosine kinase, Src, the activity of which correlates with disease stage and patient survival. Therefore, we investigated the effects of Src inhibition using the tyrosine kinase inhibitor dasatinib on oxaliplatin sensitivity. We show that oxaliplatin acutely activates Src and that combination treatment with dasatinib is synergistic in a cell-line dependent manner, with the level of Src activation correlating with extent of synergy in a panel of six cell lines. Intracellular reactive oxygen species (ROS) are generated after oxaliplatin treatment, and ROS potently activates Src. Pretreatment with antioxidants inhibits oxaliplatin-induced Src activation. In oxaliplatin-resistant cell lines, Src activity is constitutively increased. In a mouse model of colorectal liver metastases, treatment with oxaliplatin also results in chronic Src activation. The combination of dasatinib and oxaliplatin results in significantly smaller tumors compared with single-agent treatment, corresponding with reduced proliferation and angiogenesis. Therefore, we conclude that oxaliplatin activates Src through a ROSdependent mechanism. Src inhibition increases oxaliplatin activity both in vitro and in vivo. These results suggest that Src inhibitors combined with oxaliplatin may have efficacy in metastatic colon cancer and may provide the first indication of a molecular phenotype that might be susceptible to such combinations. [Cancer Res 2009;69(9):3842-9]
The nonreceptor protein tyrosine kinase Src is overexpressed in 70% of pancreatic adenocarcinomas. Here, we describe the effect of molecular and pharmacological down-regulation of Src on incidence, growth, and metastasis of pancreatic tumor cells in an orthotopic model. Src expression in L3.6pl human pancreatic tumor cells was reduced by stable expression of a plasmid encoding small interfering RNA (siRNA) to c-src. In stable siRNA clones, Src expression was reduced >80%, with no change in expression of the related kinases c-Yes and c-Lyn, and proliferation rates were similar in all clones. Phosphorylation of Akt and p44/42 Erk mitogen-activated protein kinase and production of VEGF and IL-8 in culture supernatants were also reduced (P < 0.005). On orthotopic implantation of varying cell numbers into nude mice, tumor incidence was unchanged; however, in the siRNA clones, large tumors failed to develop, and incidence of metastasis was significantly reduced, suggesting that c-Src activity is critical to tumor progression. To examine this possibility further, animals bearing established wild-type tumors were treated with the Src/Abl-selective inhibitor BMS-354825 (dasatinib). Tumor size was decreased, and incidence of metastases was significantly reduced in treated mice compared with controls. These results demonstrate that Src activation contributes to pancreatic tumor progression in this model, offering Src as a candidate for
Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process.
Interleukin-8 (IL-8) is an angiogenic factor that promotes growth of pancreatic tumors. The purpose of this study was to determine if c-Src, a protein tyrosine kinase frequently overexpressed in pancreatic cancer, regulated IL-8 expression and to elucidate the Src-mediated signaling pathways that contribute to angiogenesis in pancreatic adenocarcinoma cells. In a panel of pancreatic cancer cell lines, expression of total and activated Src correlated with IL-8 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.