Recordings have been obtained simultaneously from several, individually selected neurons in the motor cortex of unanesthetized monkey as the animal performed simple arm movements. With the use of comparatively simple quantitative procedures, the activity of small sets of cells was found to be adequate for rather accurate real-time prediction of the time course of various response measurements. In addition, the results suggest that hypotheses concerning the response variables "controlled" by cortical motor systems may well depend upon whether or not the temporal relations between simultaneously active neurons are taken into account.
The retrograde transport of horseradish peroxidase was used to study the topographic and laminar origins of the cortical projections to the parvocellular and the magnocellular divisions of the red nucleus in Macaca mulatta and Macaca fascicularis. Approximately 90% of the corticorubral projection is directed to the parvocellular division of the nucleus. Corticoparvocellular (CRp) neurons are pyramidally shaped, are smaller in size than corticospinal neurons, and are more numerous. They are found principally in sublamina Va of cytoarchitectonic areas 4 and 6, and in moderate quantities in sublamina Vb of posterior area 8 and area 5. In areas 4 and 6, the cells are grouped in clusters of three to 15 neurons each and are arranged in cellular bands of varying rostrocaudal thickness which course mediolaterally. With respect to functionally defined zones, CRp neurons are found throughout the supplementary motor area and the precentral motor cortex. In addition, they are found in parts of areas 5, 6, and 24 that project to these cortical motor areas, and that are thought to have "premotor" or movement-programming functions. The corticomagnocellular (CRm) projection arises principally from cells in sublamina Vb of the precentral arm and leg areas (area 4), and from adjacent parts of posterior area 6, CRm cells are pyramidally shaped, and their size distribution is bimodal, with peaks that correspond, respectively, to the modal diameters of CRp and of corticospinal neurons. These results and those of previous studies suggest that CRm neurons are involved principally in the control of hand and foot movements, with little effect on more proximal musculature. The massive CRp projection, however, is clearly part of a large cerebrocerebellar communication system, with motor and/or movement programming functions that have yet to be clearly defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.