A gene bank of Sau3A partially digested Candida albicans DNA in vector YEp13 was used to complement a ura3 mutation (orotidine-5'-phosphate decarboxylase, OMPdecase) in S. cerevisiae. Two plasmids which complemented ura3 and showed clear linkage of Ura+ and plasmid markers were selected for further study. Both plasmids also complemented the corresponding OMPdecase mutation (pyrF) in E. coli. Restriction mapping and subcloning studies localized the OMPdecase complementing activity to a region common to both plasmids. Probes prepared from this common region hybridized specifically to C. albicans DNA and not to E. coli or S. cerevisiae DNA. Southern blot analysis also showed that the restriction map of the ura3 complementing region of one plasmid was colinear with C. albicans genomic DNA. Expression of the OMPdecase complementing gene in E. coli and S. cerevisiae was not dependent upon orientation relative to vector sequences, suggesting that promotion could be occurring within the C. albicans fragment. Expression was sufficient to allow complementation in S. cerevisiae with integrating as well as high copy number vectors.
Yeast phosphatidylinositol transfer protein (Sec14p) is essential for Golgi function and cell viability. We now report a characterization of five yeast SFH (Sec Fourteen Homologue) proteins that share 24 -65% primary sequence identity with Sec14p. We show that Sfh1p, which shares 64% primary sequence identity with Sec14p, is nonfunctional as a Sec14p in vivo or in vitro. Yet, SFH proteins sharing low primary sequence similarity with Sec14p (i.e., Sfh2p, Sfh3p, Sfh4p, and Sfh5p) represent novel phosphatidylinositol transfer proteins (PITPs) that exhibit phosphatidylinositol-but not phosphatidylcholine-transfer activity in vitro. Moreover, increased expression of Sfh2p, Sfh4p, or Sfh5p rescues sec14-associated growth and secretory defects in a phospholipase D (PLD)-sensitive manner. Several independent lines of evidence further demonstrate that SFH PITPs are collectively required for efficient activation of PLD in vegetative cells. These include a collective requirement for SFH proteins in Sec14p-independent cell growth and in optimal activation of PLD in Sec14p-deficient cells. Consistent with these findings, Sfh2p colocalizes with PLD in endosomal compartments. The data indicate that SFH gene products cooperate with "bypass-Sec14p" mutations and PLD in a complex interaction through which yeast can adapt to loss of the essential function of Sec14p. These findings expand the physiological repertoire of PITP function in yeast and provide the first in vivo demonstration of a role for specific PITPs in stimulating activation of PLD.
Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes, ERG9 (squalene synthase), ERG1 (squalene epoxidase), and ERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes, ERG11 (lanosterol demethylase) and ERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene and fen1 and fen2 mutations, respectively. The remaining cloned genes, ERG6 (C-24 methylase), ERG2 (D8AE7 isomerase), ERG3 (C-5 desaturase), and ERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).
Nikkomycin Z inhibits chitin synthase in vitro but does not exhibit antifungal activity against many pathogens. Assays of chitin synthase isozymes and growth assays with isozyme mutants were used to demonstrate that nikkomycin Z is a selective inhibitor of chitin synthase 3. (20,25).In vitro effects of nikkomycin Z. The availability of mutant strains that express or overexpress single chitin synthase activities makes it possible to obtain extracts containing individual chitin synthase enzymes. We prepared digitonin-treated cell extracts from wild-type S288C cells (14) (Chsl is the predominant chitin synthase activity found in extracts of wild-type cells treated with trypsin) and cells that contain high-copy-number CHS2 (SSY563-9B or ECY36-3D [YEp352-CHS2]) (Table 1). For a 250-mg cell pellet (an original culture volume of -100 ml is usually sufficient), 750 ,u1 of 1% digitonin-25 mM MES (morpholineethanesulfonic acid; pH 6.3) was added and the cells were shaken at 30°C for 15 min. They were centrifuged at -12,000 X g for 5 min, and the pellet was washed with 2.7 ml of 25 mM MES, pH 6.3. The pellet was resuspended in a total volume of 750 ,u1 of 25 mM MES, pH 6.3-33% glycerol.Membranes from strain ECY36-3C were prepared for Chs3 assays by a modification of the method of Orlean (20). Cells were washed once in 50 mM Tris-HCl, pH 8.0-5 mM MgCl2, and after membranes were prepared, they were resuspended in the same buffer containing 33% glycerol.Enzyme assays were performed to measure the in vitro sensitivity of the three chitin synthases to nikkomycin Z and/or polyoxin D (both from Calbiochem). The cells were first
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.