The Vietoris-Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add topological structure to an otherwise disconnected set of points. It is widely used because it encodes useful information about the topology of the underlying metric space. This information is often extracted from its so-called persistence diagram. Unfortunately, this filtration is often too large to construct in full. We show how to construct an O(n)-size filtered simplicial complex on an n-point metric space such that its persistence diagram is a good approximation to that of the Vietoris-Rips filtration. This new filtration can be constructed in O(n log n) time. The constant factors in both the size and the running time depend only on the doubling dimension of the metric space and the desired tightness of the approximation. For the first time, this makes it computationally tractable to approximate the persistence diagram of the Vietoris-Rips filtration across all scales for large data sets.We describe two different sparse filtrations. The first is a zigzag filtration that removes points as the scale increases. The second is a (non-zigzag) filtration that yields the same persistence diagram. Both methods are based on a hierarchical net-tree and yield the same guarantees.
We present the Iterated-Tverberg algorithm, the first deterministic algorithm for computing an approximate centerpoint of a set S ∈ R d with running time sub-exponential in d. The algorithm is a derandomization of the Iterated-Radon algorithm of Clarkson et al and is guaranteed to terminate with an O(1/d 2)-center. Moreover, it returns a polynomial-time checkable proof of the approximation guarantee, despite the coNP-Completenes of testing centerpoints in general. We also explore the use of higher order Tverberg partitions to improve the runtime of the deterministic algorithm and improve the approximation guarantee for the randomized algorithm. In particular, we show how to improve the O(1/d 2)-center of the Iterated-Radon algorithm to O(1/d r r−1) for a cost of O((rd) d) in time for any integer r.
Given n points P in a Euclidean space, the Johnson-Linden-strauss lemma guarantees that the distances between pairs of points is preserved up to a small constant factor with high probability by random projection into O(log n) dimensions. In this paper, we show that the persistent homology of the distance function to P is also preserved up to a comparable constant factor. One could never hope to preserve the distance function to P pointwise, but we show that it is preserved sufficiently at the critical points of the distance function to guarantee similar persistent homology. We prove these results in the more general setting of weighted kth nearest neighbor distances, for which k = 1 and all weights equal to zero gives the usual distance to P .
The Vietoris-Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add topological structure to an otherwise disconnected set of points. It is widely used because it encodes useful information about the topology of the underlying metric space. This information is often extracted from its so-called persistence diagram. Unfortunately, this filtration is often too large to construct in full. We show how to construct an O(n)-size filtered simplicial complex on an n-point metric space such that its persistence diagram is a good approximation to that of the Vietoris-Rips filtration. This new filtration can be constructed in O(n log n) time. The constant factors in both the size and the running time depend only on the doubling dimension of the metric space and the desired tightness of the approximation. For the first time, this makes it computationally tractable to approximate the persistence diagram of the Vietoris-Rips filtration across all scales for large data sets. We describe two different sparse filtrations. The first is a zigzag filtration that removes points as the scale increases. The second is a (non-zigzag) filtration that yields the same persistence diagram. Both methods are based on a hierarchical net-tree and yield the same guarantees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.